Anew Types of Contra Continuity in Bi-Supra Topological Space

Taha H. Jasim¹, Ali A. Shihab², Shaymaa A. Hameed²

¹ Department of Mathematics, college of computer science and Mathematics, University of Tikrit, Tikrit, Iraq ² Department of Mathematics, college of Education for pure sciences, University of Tikrit, Tikrit, Iraq

Abstract:

In this paper we introduce a new class of functions in bi-supra topological space called (contra-i[contra-ii]-continuous, contra-g-i[contra-g-ii]-continuous, contra-g-ii]-continuous, contra-g-ii]-continuous, contra-g-ii]-continuous, contra-g-ii]-continuous, contra-g-ii]-continuous, contra-g-ii]-continuous, contra-g-ii]-continuous, contra-g-ii]-continuous, contra-g-ii]-continuous) and we study the relation among these functions and the composition of these functions. At last many important theorems are proved.

1.Introduction

In 1996, J. Dontchev[12] introduced the notion of contra continuity. In 2007, Caldas et al.[16] introduced and investigated the notion of contra gcontinuity.In 2012,S.I. Mahmood [23] introduced the notion of contra gr-continuity. In 1991, H. Maki, P.Sundaram and K. Balachandran[8] are introduced the notion of contra ga-continuity. In 2012, Metin Akdag and Alkan Ozkan[17] introduced and investigated the notion of contra generalized b-continuity (contra gb - continuity).In 2008, Ekici.E[7] introduced the notion of contra πg continuity. In 2013, C. Janaki, V. Jeyanthi [4] are introduced the nothion of contra πgr - continuity.In 2008, I. Arokiarani, K. Balachandran and C. Janaki, [10] introduced the notion of contra $\pi g \alpha$ -continuity.In 2011, Sreeja .D and Janaki.C[24] are introduced the notion of contra πgb-continuity.In 1963,Kelly[14] introduced the concept of bi-topological space where a set X equipped with two topologies and denoted by $(X,\mathcal{T}_1,\mathcal{T}_2)$ where $\mathcal{T}_1,\mathcal{T}_2$ are two topologies defined on X.Al mashhour[15] in (1983) introduced the concept of supra topological space as a subfamily \mathcal{T} of a family of all subset of X is said to be a supra topology on X if:

- 1. $\phi, X \in \mathcal{T}$
- 2. If $Ai \in \mathcal{T}$ for all $i \in I$ then $\bigcup Ai \in \mathcal{T}$, where I is index set.
- $(X,\,\mathcal{T})$ is called a supra topological space . The elements of \mathcal{T} are called supra open sets in (X,\mathcal{T}) and the complement of supra open set is called a supra closed set .In this paper we introduce a new Types of Contra Continuity in Bi-Supra Topological Space.

2.preliminaries

Let us recall the definitions and results which are used in the sequel.

Definition 2.1:

A subset A of a topological space (X,τ) is called:

- 1. regular-open[18]if A=int(cl(A)) and regular-closed if A=cl(int(A)).
- 2. semi-open[20] if $A \subseteq cl(int(A))$ and a semi-closed if $int(cl(A)) \subseteq A$.
- 3. pre-open[2] if $A \subseteq int(cl(A))$ and a pre-closed if $cl(int(A)) \subseteq A$.
- 4. α -open[21] if $A \subseteq int(cl(int(A)))$ and an α -closed if $cl(int(cl(A))) \subseteq A$.

5. π -open[25] if it is the finite union of regular open set

Definition 2.2:[9]

Let *A* be a subset of a topological space (X,τ) , then:

- 1. $Scl(A) = \bigcap \{ F: A \subseteq F, F \text{ is } s\text{-closed set } \}.$
- 2. $Pcl(A) = \bigcap \{ F: A \subseteq F, F \text{ is } p\text{-closed set } \}.$
- 3. $\alpha cl(A) = \bigcap \{ F: A \subset F, F \text{ is } \alpha\text{-closed set } \}.$
- 4. $rcl(A) = \bigcap \{ F: A \subset F \}$, F is r-closed set $\}$.

Lemma 2.3:

Let *A* be a subset of topological space (X,τ) , then:

- 1. $\alpha cl(A) = A \cup cl(int(cl(A))).[6]$
- 2. $bcl(A) = Scl(A) \cap Pcl(A) = A \cup [int(cl(A)) \cap cl(int(A))].[5]$

Definition 2.4:

A subset A of a topological space (X,τ) is called:

- 1. *g*-closed [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in X.
- 2. gr-closed [22] if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in X.
- 3. $g\alpha$ -closed [9] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open set in X.
- 4. gb-closed [1] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in X.
- 5. πg -closed [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open set in X.
- 6. πgr -closed [13] if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open set in X.
- 7. $\pi g \alpha$ -closed [3] if $\alpha c l(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open set in X.
- 8. πgb -closed [24] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open set in X.

3.Bi-supra topological space Definition 3.1:

Let X be a non-empty set. Let \mathcal{ST} be the set of all semi open subsets of X(for short $\mathcal{So}(X)$ [20] and Let \mathcal{PT} be the set of all pre-open subsets of X (for short $\mathcal{Po}(X)$)[2], then we say that $(X,\mathcal{ST},\mathcal{PT})$ is a bi-supra topological space. where each of (X,\mathcal{ST}) and (X,\mathcal{PT}) are supra topological spaces.

Remark 3.2:

It is clear that \mathcal{ST} , \mathcal{PT} was independent.

Example 3.3:

Let $X=\{a,b,c,d\}$ with $\mathcal{T}=\{\phi,\{c\},\{a,b\},\{a,b,c\},X\}$ therefore

 $So(X) = ST = {\phi,{c},{a,b},{c,d},{a,b,c},{a,b,d},X}.$

 $\mathcal{P}o(X)$

 $\mathcal{PT} = \{\phi, \{c\}, \{a,b\}, \{a,b,c\}, \{a\}, \{b\}, \{a,c\}, \{b,c\}, \{a,c,d\}, \{b,c,d\}, X\}.$

Hence (X,ST,\mathcal{PT}) is bi-supra topological space. Now we introduce the definition of the type of open sets in bi-supra topological space.

Definition 3.4:

Let (X,ST, \mathcal{PT}) be a bi-supra topological space and let G be a subset of X. Then G is said to be:

- 1. $(\mathcal{ST}, \mathcal{PT})$ -supra open set (briefly *i*-open set) if $G=(A \cup B) \cup \varphi$ where $A \in \mathcal{ST}$ and $B \in \mathcal{PT}$. The complement $(\mathcal{ST}, \mathcal{PT})$ -supra open set is called $(\mathcal{ST}, \mathcal{PT})$ -supra closed set (briefly *i*-closed set).
- 2. $(ST, \mathcal{P}T)^*$ -supra open set(briefly ii-open set) if $G=A\cup B$ where $A\in ST$, $B\in \mathcal{P}T$ such that $A\notin \mathcal{P}T$ and $A\cap B\neq \varphi$. The complement of $(ST, \mathcal{P}T)^*$ -supra open set is called $(ST, \mathcal{P}T)^*$ -supra closed set (briefly ii-closed set).

Proposition 3.5:

1.Every *ii*-open [*ii*-closed] set is *i*-open [*i*-closed] set but the converse is not true.

2. Notice that if $A \in \mathcal{ST}$, $B \in \mathcal{PT}$ such that $B \notin \mathcal{ST}$ and $A \cap B \neq \varphi$ is equivalent to (2) in Definition 3.4. Proof: Directly from definition.

Remark 3.6:

Observe that

The set of all i[ii]-open set and i[ii]-closed set is need not necessarily form a topology it is a supra topology. Now we give an example to explain the types of open sets in bi-supra topological space.

Example 3.7:

Let $X = \{a,b,c,d\}$

$$\begin{split} \mathcal{T} &= \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, X\}. \mathcal{ST} \\ &= \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,d\}, \{a,b,c\}, \{a,b,d\} \\ \{a,c,d\}, X\}. \end{split}$$

$$\begin{split} \mathcal{PT} = & \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, X\}. \\ i\text{-open set } s = & \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, X\}. \end{split}$$

 $\begin{array}{ll} \emph{i-}closed & sets = \{\phi, \{b\}, \{c\}, \{d\}, \{c,d\}, \{b,d\} \, \{b,c\}, \{a,c\}, \\ \{a,c,d\}, \{b,c,d\}, X\}. \end{array}$

ii-open sets= $\{\phi, \{a,d\}, \{a,b,d\}, \{a,c,d\}, \{b,d\}, X\}$. ii-closed sets = $\{\phi, \{a,c\}, \{b,c\}, \{c\}, \{b\}, X\}$.

4.Some types of sets in bi-supra topological space

Definition 4.1:

A subset A of bi-supra topological space (X,ST, PT) is called:

1.regular $i[regular \ ii]$ -open if A=i-int[ii-int](i-cl(A)[ii-cl(A)]) and regular $i[regular \ ii]$ -closed if A=i-cl[ii-cl](i-int(A)[ii-int(A)]).

2.semi-i[semi-ii]-open if $A \subseteq i$ -cl[ii-cl](i-int(A)[ii-int(A)]) and semi-i[semi-ii]-closed if

i-int[ii-int](i-cl(A)[ii-cl $(A)]) <math>\subseteq A$.

3.pre-i[pre-ii]-open if $A \subseteq i$ -int[ii-int](i-cl(A)[ii-cl(A)]) and pre-i[pre-ii]-closed if

i-cl[ii-cl](i-int(A)[ii- $int(A)]) \subseteq A$.

 $4.\alpha$ - $i[\alpha$ -ii]-open if $A \subseteq i$ -int[ii-int](i-cl[ii-cl[ii-cl[ii-int(A)[ii-int(A)])) and an α - $i[\alpha$ -ii]-closed if

i-cl[ii-cl[(i-int[ii-int](i-cl(A)[ii- $cl(A)])) <math>\subseteq A$.

5. π - $i[\pi$ -ii]-open if it is the finite union of regular i[regular ii] open sets.

Definition 4.2:

A subset A of bi-supra topological space (X, ST, PT) is called:

- 1. S-i-cl(A)[S-ii- $cl(A)] = \bigcap \{ F: A \subseteq F , F \text{ is semi-} i[\text{semi-}ii]\text{-closed set } \}.$
- 2. P-i-cl(A)[P-ii- $cl(A)] = \bigcap \{ F: A \subseteq F , F \text{ is pre-}i[pre-<math>ii]$ -closed set $\}$.
- 3. α -i- $cl(A)[\alpha$ -ii- $cl(A)] = \bigcap \{ F: A \subseteq F , F \text{ is } \alpha$ - $i[\alpha$ -ii]-closed set $\}$.
- 4. r-i-cl(A)[r-ii- $cl(A)] = \bigcap \{ F: A \subseteq F , F \text{ is regular } i[\text{regular } ii]\text{-closed set } \}.$

Lemma 4.3:

Let *A* be a subset of bi-supra topological space (X, ST, PT) then:

- 1. α -i- $cl(A)[\alpha$ -ii- $cl(A)] = A \cup i$ -cl[ii-cl[(i-int[ii-int](i-cl(A)[ii-cl(A)])).
- 2. b-i-cl(A)[b-ii-cl(A)] = S-i-cl(A)[S-ii- $cl(A)] <math>\cap$ P-i-cl(A)[P-ii- $cl(A)] = A \cup [i$ -int[ii-int]

 $(i-cl(A)[ii-cl(A)]) \cap i-cl[ii-cl](i-int(A)[ii-int(A)])].$

Definition 4.4:

A subset A of bi-supra topological space $(X, \mathcal{ST}, \mathcal{PT})$ is called:

- 1. g-i[g-ii]-closed if i-cl(A)[ii- $cl(A)] \subseteq U$ whenever $A \subset U$ and U is i[ii]-open set in X.
- 2.gr-i[gr-ii]-closed if $r-i-cl(A)[r-ii-cl(A)] \subseteq U$ whenever $A \subseteq U$ and U is i[ii]-open set in X.
- 3. $g\alpha$ - $i[g\alpha$ -ii]-closed if α -i- $cl(A)[\alpha$ -ii- $cl(A)] \subseteq U$ whenever $A \subseteq U$ and U is α - $i[\alpha$ -ii]-open set in X.
- 4. gb-i[gb-ii]-closed if b-i-cl(A)[b-ii- $cl(A)] \subseteq U$ whenever $A \subseteq U$ and U is i[ii]-open set in X.
- 5. $\pi g i[\pi g ii]$ -closed if $i cl(A)[ii cl(A)] \subseteq U$ whenever $A \subseteq U$ and U is $\pi i[\pi ii]$ -open set in X.
- 6. $\pi gr i[\pi gr ii]$ -closed if $r i cl(A)[r ii cl(A)] \subseteq U$ whenever $A \subseteq U$ and U is $\pi i[\pi ii]$ -open set in X.
- 7. $\pi g \alpha i [\pi g \alpha ii]$ -closed if $\alpha i cl(A)[\alpha ii cl(A)] \subseteq U$ whenever $A \subseteq U$ and U is $\pi i [\pi ii]$ -open set in X.
- 8. πgb - $i[\pi gb$ -ii]-closed if b-i-cl(A)[b-ii- $cl(A)] \subseteq U$ whenever $A \subseteq U$ and U is π - $i[\pi$ -ii]-open set in X.

5.Contra Continuity in bi-supra topological space

Definition 5.1:

A function $f: (X, \mathcal{S}\mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \to (Y, \mathcal{S}\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)$ is called:

- 1. Contra-i[contra-ii] continuous if $f^{-1}(V)$ is i[ii]-closed in X for each i[ii]-open set V of Y.
- 2. Contra g-i[contra-g-ii]-continuous if $f^{-1}(V)$ is g-i[g-ii]-closed in X for each i[ii]-open set V of Y.
- 3. Contra gr-i[contra-gr-ii]-continuous if $f^{-1}(V)$ is gr-i[gr-ii]-closed in X for each i[ii]-open set V of Y.
- 4. Contra $g\alpha$ -i[contra- $g\alpha$ -ii]-continuous if $f^{-1}(V)$ is $g\alpha$ -i[$g\alpha$ -ii]-closed in X for each i[ii]-open set V of Y.
- 5. Contra gb-i[contra-gb-ii]-continuous if $f^{-1}(V)$ is gb-i[gb-ii]-closed in X for each i[ii]-open set V of Y.
- 6. Contra $\pi g i[\text{contra} \pi g ii]$ -continuous if $f^{-1}(V)$ is $\pi g i[\pi g ii]$ -closed in X for each i[ii]-open set V of Y.

- 7. Contra $\pi gr i[\text{contra-}\pi gr ii]$ -continuous if $f^{-1}(V)$ is πgr - $i[\pi gr$ -ii]-closed in X for each i[ii]-open set V of
- 8. Contra $\pi g \alpha i [\text{contra-} \pi g \alpha i i] \text{continuous if } f^{-1}(V)$ is $\pi g \alpha - i [\pi g \alpha - ii]$ -closed in X for each i[ii]-open set V
- 9. Contra πgb -i[contra- πgb -ii]-continuous if $f^{-1}(V)$ is πgb - $i[\pi gb$ -ii]-closed in X for each i[ii]-open set V of

Proposition 5.2:

For a function $f: (X, ST_X, \mathcal{P}T_X) \to (Y, ST_Y, \mathcal{P}T_Y)$ the following conditions are hold

- 1. Every contra-i[contra-ii]- continuous is contra g*i*[contra *g-ii*]-continuous.
- 2. Every contra g-i[contra g-ii]- continuous is contra $g\alpha$ -i[contra $g\alpha$ -ii]-continuous.
- 3. Every contra gr-i[contra gr-ii]- continuous is contra $g\alpha$ -i[contra $g\alpha$ -ii]-continuous.
- 4. Every contra g-i[contra g-ii]- continuous is contra gb-i[contra gb-ii]-continuous.
- 5. Every contra gr-i[contra gr-ii]- continuous is contra gb-i[contra gb-ii]-continuous.
- 6. Every contra gr-i[contra gr-ii]- continuous is contra g-i[contra g-ii]-continuous.
- 7. Every contra $\pi g i[\text{contra } \pi g ii]$ continuous is contra πgb -i[contra πgb -ii] continuous.
- 8. Every contra $\pi g \alpha i[\text{contra } \pi g \alpha ii]$ continuous is contra πgb -i[contra πgb -ii]-continuous.
- 9. Every contra $\pi gr i[\text{contra } \pi gr ii]$ continuous is contra $\pi g - i[\text{contra } \pi g - ii]$ -continuous.
- 10. Every contra $\pi gr i[\text{contra } \pi gr ii]$ continuous is contra $\pi g \alpha - i [\text{contra } \pi g \alpha - ii] - \text{continuous}.$
- 11. Every contra $\pi gr i[\text{contra } \pi gr ii]$ continuous is contra $\pi g b - i [\text{contra } \pi g b - i i] - \text{continuous}$.
- 12. Every contra $\pi g i[\text{contra } \pi g ii]$ continuous is contra $\pi g \alpha - i [\text{contra } \pi g \alpha - i i]$ - continuous.

Proof:

1. Let V be i[ii]-open set in Y.Since f is contra $i[{\rm contra}\hbox{-}ii]\hbox{-}{\rm continuous}$, $f^{-1}(V)$ is $i[ii]\hbox{-}{\rm closed}$ in X. Thus $f^{-1}(V)$ is g - i[g - ii]-closed in X.(since every i[ii]closed is g-i[g-ii]-closed).

Hence f is contra g-i[contra g-ii]-continuous.

2. Let V be i[ii]-open set in Y.Since f is contra gi[contra g-ii]-continuous, $f^{-1}(V)$ is g-i [g-ii]-closed in X. Thus $f^{-1}(V)$ is $g\alpha$ - $i[g\alpha$ -ii]-closed in X.(since every g-i[g-ii]-closed is $g\alpha$ - $i[g\alpha$ -ii]-closed).

Hence f is contra $g\alpha$ -i[contra $g\alpha$ -ii]-continuous.

3. Let V be i[ii]-open set in Y.Since f is contra gri[contra gr-ii]-continuous , $f^{-1}(V)$ is gr-i[gr-ii]closed in X. Thus $f^{-1}(V)$ is $g\alpha - i[g\alpha - ii]$ -closed in X.(since every gr-i[gr-ii]-closed is $g\alpha-i[g\alpha-ii]$ closed).

Hence f is contra $g\alpha$ -i[contra $g\alpha$ -ii]-continuous.

4. Let V be i[ii]-open set in Y.Since f is contra gi[contra g-ii]-continuous , $f^{-1}(V)$ is g-i [g-ii]-closed in X. Thus $f^{-1}(V)$ is gb-i[gb-ii]-closed in X.(since every g-i[g-ii]-closed is gb-i[gb-ii]-closed).

Hence f is contra gb-i[contra gb-ii]-continuous.

5. Let V be i[ii]-open set in Y.Since f is contra gri[contra gr-ii]-continuous , $f^{-1}(V)$ is gr-i[gr-ii]closed in X. Thus $f^{-1}(V)$ is gb-i[gb-ii]-closed in X.(since every gr-i[gr-ii]-closed is gb-i[gb-ii]closed).

Hence f is contra gb-i[contra gb-ii]-continuous.

6. Let V be i[ii]-open set in Y.Since f is contra gr $i[\text{contra} \ gr-ii]$ -continuous , $f^{-1}(V)$ is gr-i[gr-ii]closed in X. Thus $f^{-1}(V)$ is g-i[g-ii]-closed in X.(since every gr-i[gr-ii]-closed is g-i[g-ii]-closed).

Hence f is contra g-i[contra g-ii]-continuous.

7. Let V be i[ii]-open set in Y.Since f is contra πg *i*[contra $\pi g - ii$]-continuous , $f^{-1}(V)$ is $\pi g - i[\pi g - ii]$ closed in X. Thus $f^{-1}(V)$ is $\pi gb - i[\pi gb - ii]$ -closed in X.(since every $\pi g - i[\pi g - ii]$ -closed is $\pi g b - i[\pi g b - ii]$ closed).

Hence f is contra πgb -i[contra πgb -ii]-continuous.

8. Let V be i[ii]-open set in Y.Since f is contra $\pi g \alpha$ i[contra $\pi g \alpha - ii$]-continuous, $f^{-1}(V)$ is $\pi g \alpha - i[\pi g \alpha - ii]$ closed in X. Thus $f^{-1}(V)$ is $\pi gb-i[\pi gb-ii]$ -closed in X.(since every $\pi g \alpha - i$ $[\pi g \alpha - ii]$ -closed is $\pi g b - i [\pi g b - i]$ ii]-closed).

Hence f is contra πgb -i[contra πgb -ii]-continuous.

9. Let V be i[ii]-open set in Y.Since f is contra πgr $i[\text{contra }\pi gr\text{-}ii]\text{-continuous}$, $f^{-1}(V)$ is $\pi gr\text{-}i[\pi gr\text{-}ii]\text{-}$ closed in X. Thus $f^{-1}(V)$ is $\pi g - i[\pi g - ii]$ -closed in X.(since every $\pi gr - i[\pi gr - ii]$ -closed is $\pi g - i[\pi g - ii]$ closed).

Hence f is contra πg -i[contra πg -ii]-continuous.

10. Let V be i[ii]-open set in Y.Since f is contra πgr i[contra $\pi gr - ii$]-continuous, $f^{-1}(V)$ is $\pi gr - i[\pi gr - ii]$ closed in X. Thus $f^{-1}(V)$ is $\pi g \alpha - i[\pi g \alpha - ii]$ -closed in X.(since every $\pi gr - i[\pi gr - ii]$ -

closed is $\pi g \alpha - i [\pi g \alpha - ii]$ -closed).

Hence f is contra $\pi g \alpha - i [\text{contra } \pi g \alpha - i i] - \text{continuous}$.

11. Let V be i[ii]-open set in Y.Since f is contra πgr i[contra πgr -ii]-continuous, $f^{-1}(V)$ is πgr -i[πgr -ii]closed in X. Thus $f^{-1}(V)$ is πgb - $i[\pi gb$ -ii]-closed in X.(since every $\pi gr - i[\pi gr - ii]$ -closed is $\pi gb - i[\pi gb - ii]$ closed).

Hence f is contra πgb -i[contra πgb -ii]-continuous.

12. Let V be i[ii]-open set in Y.Since f is contra πg *i*[contra $\pi g - ii$]-continuous , $f^{-1}(V)$ is $\pi g - i[\pi g - ii]$ closed in X. Thus $f^{-1}(V)$ is $\pi g \alpha - i [\pi g \alpha - ii]$ -closed in X.(since every $\pi g - i[\pi g - ii]$ -closed is $\pi g \alpha - i[\pi g \alpha - ii]$ closed).

Hence f is contra $\pi g \alpha - i[\text{contra } \pi g \alpha - ii]$ -continuous.

Remark 5.3: The implication between some types in proposition 5.2 are given in the following diagrams. Contra-i[contra-ii]-continuous.

Contra $\pi g \cdot i[$ contra $\pi g \cdot ii]$ -continuous

Contra $\pi g b \cdot i[$ contra $\pi g a \cdot ii]$ -continuous

Contra $\pi g a \cdot i[$ contra $\pi g a \cdot ii]$ -continuous

Contra $\pi g r \cdot i[$ contra $\pi g r \cdot ii]$ -continuous

Remark 5.4:The converse of some of the above statements is not ture as shown in the following examples.

Example 5.5:

Let $X=\{a,b,c,d\}=Y$

 $\mathcal{T}_X = \{ \varphi, \{a\}, \{c\}, \{a,c\}, \{b,c\}, \{a,b,c\}, X \}. \mathcal{T}_Y = \{ \varphi, \{a,b\}, \{a,b,d\}, \{a,b,c\}, Y \}.$

Let $f: (X,ST_X, \mathcal{P}T_X) \to (Y, ST_Y, \mathcal{P}T_Y)$ be identity function. Hence f is contra g-ii-continuous but not contra-ii-continuous.

Example 5.6:

Let $X=\{a,b,c,d\}=Y$

 $\mathcal{T}_X = \{ \varphi, \{a\}, \{c\}, \{a,c\}, \{b,c\}, \{a,b,c\}, X \}.$

 $T_Y = \{\phi, \{a\}, \{d\}, \{a,d\}, \{a,c\}, \{a,c,d\}, Y\}.$

Let $f: (X, ST_X, \mathcal{P}T_X) \to (Y, ST_Y, \mathcal{P}T_Y)$ be identity function. Hence f is contra gb-ii-continuous but not contra g-ii-continuous and not contra gr-ii-continuous.

Example 5.7:

Let $X=\{a,b,c,d\}=Y$

 $\mathcal{T}_{\mathbf{x}} = \{ \varphi, \{a,b,c\}, X \}.$

 $T_Y = \{\phi, \{c\}, \{d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, Y\}.$

Let $f: (X,ST_X, \mathcal{P}T_X) \to (Y, ST_Y, \mathcal{P}T_Y)$ be identity function. Hence f is contra g-i-continuous ,contra gb-i-continuous and contra g α -i-continuous but not contra gr-i-continuous.

Example 5.8:

Let $X=\{a,b,c,d\}=Y$

 $\mathcal{T}_X = \{ \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, X \}.$

 $\mathcal{T}_{Y} = \{ \varphi, \{d\}, \{a,d\}, Y \}.$

Let $f: (X, ST_X, \mathcal{P}T_X) \to (Y, ST_Y, \mathcal{P}T_Y)$ be identity function. Hence f is contra $\pi g - i$ -continuous , contra

 πgb -i-continuous and contra $\pi g\alpha$ -i-continuous but not contra πgr -i-continuous.

6.The Composition of some types of functions in bi-supra topological space

Proposition 6.1:

Let $f: (X, ST_X, \mathcal{P}T_X) \to (Y, ST_Y, \mathcal{P}T_Y)$ and $g: (Y, ST_Y, \mathcal{P}T_Y) \to (Z, ST_Z, \mathcal{P}T_Z)$ such that $gof: (X, ST_X, \mathcal{P}T_X) \to (Z, ST_Z, \mathcal{P}T_Z)$ is the composition function, then:

1. If f is g-i[g-ii]-continuous and g is contra-i[contra-ii]-continuous, then g-g is contra g-i[contra g-ii]-continuous.

2. If f is $g\alpha - i[g\alpha - ii]$ -continuous and g is contra-i[contra - ii]-continuous, then gof is contra $g\alpha - i[contra g\alpha - ii]$ -continuous.

3. If f is gr-i[gr-ii]-continuous and g is contra-i[contra-ii]-continuous, then gof is contra gr-ii[contra gr-ii]-continuous.

4. If f is gb-i[gb-ii]-continuous and g is contra-i[contra-ii]-continuous, then gof is contra gb-i[contra gb-ii]-continuous.

5. If f is $\pi g - i[\pi g - ii]$ -continuous and g is contra-i[contra-ii]-continuous, then $g \circ f$ is contra $\pi g - i$ [contra $\pi g - ii$]-continuous.

6. If f is πgr - $i[\pi gr$ -ii]-continuous and g is contra-i[contra-ii]-continuous, then gof is contra πgr - $i[\text{contra} \pi gr$ -ii]-continuous.

7. If f is $\pi g \alpha - i [\pi g \alpha - ii]$ -continuous and g is contra-i[contra-ii]-continuous, then $g \circ f$ is contra $\pi g \alpha - ii$ [contra $\pi g \alpha - ii$]-continuous.

8. If f is πgb - $i[\pi gb$ -ii]-continuous and g is contra-i[contra-ii]-continuous, then gof is contra πgb - $i[\text{contra}\pi gb$ -ii]-continuous.

Proof:

- 1. Let V be i[ii]-open set in Z. Since g is contra-i[contra-ii]-continuous, $g^{-1}(V)$ is i[ii]-closed in Y. Since f is $g \cdot i[g \cdot ii]$ continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is $g \cdot i[g \cdot ii]$ -closed in X. Hence $gof: (X, \mathcal{S}T_X, \mathcal{P}T_X) \to (Z, \mathcal{S}T_Z, \mathcal{P}T_Z)$ is contra $g \cdot i[\text{contra } g \cdot ii]$ -continuous.
- 2. Let V be i[ii]-open set in Z. Since g is contra-i[contra-ii]-continuous, $g^{-1}(V)$ is i[ii]-closed in Y. Since f is $g\alpha$ - $i[g\alpha$ -ii]-continuous, $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is $g\alpha$ - $i[g\alpha$ -ii]-closed in X. Hence gof: $(X,\mathcal{S}\mathcal{T}_X,\ \mathcal{P}\mathcal{T}_X)\to (Z,\ \mathcal{S}\mathcal{T}_Z,\ \mathcal{P}\mathcal{T}_Z)$ is contra $g\alpha$ - $i[\text{contra}\ g\alpha$ -ii]-continuous.
- 3. Let V be i[ii]-open set in Z. Since g is contra-i[contra-ii]-continuous, $g^{-1}(V)$ is i[ii]-closed in Y. Since f is gr-i[gr-ii]-continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is gr-i[gr-ii]-closed in X. Hence gof: $(X,\mathcal{S}\mathcal{T}_X,\ \mathcal{P}\mathcal{T}_X) \to (Z,\ \mathcal{S}\mathcal{T}_Z,\ \mathcal{P}\mathcal{T}_Z)$ is contra $gr\text{-}i[\text{contra}\ gr\text{-}ii]$ -continuous.
- 4. Let V be i[ii]-open set in Z. Since g is contra-i[contra-ii]-continuous, $g^{-1}(V)$ is i[ii]-closed in Y. Since f is gb-i[gb-ii] continuous $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is gb-i[gb-ii]-closed in X. Hence gof: $(X, ST_X, \mathcal{P}T_X) \to (Z, ST_Z, \mathcal{P}T_Z)$ is contra gb-i[contra gb-ii]-continuous.
- 5. Let V be i[ii]-open set in Z. Since g is contra-i[contra-ii]-continuous, $g^{-1}(V)$ is i[ii]-closed in Y. Since f is $\pi g \cdot i[\pi g \cdot ii]$ continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\pi g \cdot i[\pi g \cdot ii]$ -closed in X. Hence $g \circ f : (X, ST_X, \mathcal{P}T_X) \to (Z, ST_Z, \mathcal{P}T_Z)$ is contra $\pi g \cdot i[\text{contra } \pi g \cdot ii]$ -continuous.
- 6. Let V be i[ii]-open set in Z. Since g is contra-i[contra-ii]-continuous, $g^{-1}(V)$ is i[ii]-closed in Y. Since f is $\pi gr \cdot i[\pi gr \cdot ii]$ continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is $\pi gr \cdot i[\pi gr \cdot ii]$ -closed in X. Hence gof: $(X, \mathcal{S}\mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \to (Z, \mathcal{S}\mathcal{T}_Z, \mathcal{P}\mathcal{T}_Z)$ is contra $\pi gr \cdot i[\text{contra }\pi gr \cdot ii]$ -continuous.
- 7. Let V be i[ii]-open set in Z. Since g is contra-i[contra-ii]-continuous, $g^{-1}(V)$ is i[ii]-closed in Y. Since f is $\pi g \alpha \cdot i[\pi g \alpha \cdot ii]$ continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\pi g \alpha \cdot i[\pi g \alpha \cdot ii]$ -closed in X. Hence $g \circ f$: $(X, \mathcal{S}T_X, \mathcal{P}T_X) \to (Z, \mathcal{S}T_Z, \mathcal{P}T_Z)$ is contra $\pi g \alpha \cdot i[\text{contra } \pi g \alpha \cdot ii]$ -continuous.
- 8. Let V be i[ii]-open set in Z. Since g is contra-i[contra-ii]-continuous, $g^{-1}(V)$ is i[ii]-closed in Y. Since f is πgb - $i[\pi gb$ -ii] continuous, $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is πgb - $i[\pi gb$ -ii]-closed in X. Hence gof: $(X,\mathcal{S}\mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \to (Z, \mathcal{S}\mathcal{T}_Z, \mathcal{P}\mathcal{T}_Z)$ is contra πgb -i[contra πgb -ii[-continuous.

Proposition 6.2:

- Let $f: (X,ST_X, \mathcal{P}T_X) \to (Y, ST_Y, \mathcal{P}T_Y)$ and $g: (Y,ST_Y, \mathcal{P}T_Y) \to (Z, ST_Z, \mathcal{P}T_Z)$ such that $gof: (X,ST_X, \mathcal{P}T_X) \to (Z, ST_Z, \mathcal{P}T_Z)$ is the composition function,then:
- 1. If f is contra g-i[contra g-ii]-continuous and g is i[ii]-continuous, then gof is contra g-i[contra g-ii]-continuous.
- 2. If f is contra $g\alpha$ -i[contra $g\alpha$ -ii]-continuous and g is i[ii]-continuous, then gof is contra $g\alpha$ -i[contra $g\alpha$ -ii]-continuous.

- 3. If f is contra gr-i[contra gr-ii]-continuous and g is i[ii]-continuous, then gof is contra gr-i[contra gr-ii]-continuous.
- 4. If f is contra gb-i[contra gb-ii]-continuous and g is i[ii]-continuous, then gof is contra gb-i[contra gb-ii]-continuous.
- 5. If f is contra πg -i[contra πg -ii]-continuous and g is i[ii]-continuous, then gof is contra πg -i[contra πg -ii]-continuous.
- 6. If f is contra πgr -i[contra πgr -ii]-continuous and g is i[ii]-continuous, then gof is contra πgr -i[contra πgr -ii]-continuous.
- 7. If f is contra $\pi g \alpha i[\text{contra } \pi g \alpha ii]$ -continuous and g is i[ii]-continuous, then $g \circ f$ is contra $\pi g \alpha ii[\text{contra } \pi g \alpha ii]$ -continuous.
- 8. If f is contra πgb -i[contra πgb -ii]-continuous and g is i[ii]-continuous, then gof is contra πgb -i[contra πgb -ii]-continuous.

Proof:

- 1. Let V be i[ii]-open set in Z. Since g is i[ii]-continuous, $g^{-1}(V)$ is i[ii]-open in Y. Since f is contra g-i[contra g-ii] continuous, $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is g-i[g-ii]-closed in X. Hence gof: $(X, ST_X, \mathcal{P}T_X) \to (Z, ST_Z, \mathcal{P}T_Z)$ is contra g-i[contra g-ii]-continuous.
- 2. Let V be i[ii]-open set in Z. Since g is i[ii]-continuous, $g^{-1}(V)$ is i[ii]-open in Y. Since f is contra $g\alpha$ -i[contra $g\alpha$ -ii]-continuous, $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is $g\alpha$ - $i[g\alpha$ -ii]-closed in X. Hence gof: $(X,\mathcal{S}\mathcal{T}_X,\,\mathcal{P}\mathcal{T}_X)\to (Z,\,\mathcal{S}\mathcal{T}_Z,\,\mathcal{P}\mathcal{T}_Z)$ is contra $g\alpha$ - $i[contra\ g\alpha$ -ii]-continuous.
- 3. Let V be i[ii]-open set in Z. Since g is i[ii]-continuous, $g^{-1}(V)$ is i[ii]-open in Y. Since f is contra gr-i[contra <math>gr-ii] continuous, $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is gr-i[gr-ii]-closed in X. Hence gof: $(X, ST_X, \mathcal{P}T_X) \to (Z, ST_Z, \mathcal{P}T_Z)$ is contra gr-i[contra <math>gr-ii]-continuous.
- 4. Let V be i[ii]-open set in Z. Since g is i[ii]-continuous, $g^{-1}(V)$ is i[ii]-open in Y. Since f is contra gb-i[contra <math>gb-ii] continuous, $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is gb-i[gb-ii]-closed in X. Hence gof: $(X,\mathcal{S}\mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \to (Z, \mathcal{S}\mathcal{T}_Z, \mathcal{P}\mathcal{T}_Z)$ is contra gb-i[contra <math>gb-ii]-continuous.
- 5. Let V be i[ii]-open set in Z. Since g is i[ii]-continuous, $g^{-1}(V)$ is i[ii]-open in Y. Since f is contra $\pi g i[$ contra $\pi g ii]$ continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is $\pi g i[\pi g ii]$ -closed in X. Hence gof: $(X, \mathcal{S}T_X, \mathcal{P}T_X) \to (Z, \mathcal{S}T_Z, \mathcal{P}T_Z)$ is contra $\pi g i[$ contra $\pi g ii]$ -continuous.
- 6. Let V be i[ii]-open set in Z. Since g is i[ii]-continuous, $g^{-1}(V)$ is i[ii]-open in Y. Since f is contra πgr - $i[contra\pi gr$ -ii] continuous, $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is πgr - $i[\pi gr$ -ii]-closed in X. Hence gof: $(X, \mathcal{S}T_X, \mathcal{P}T_X) \to (Z, \mathcal{S}T_Z, \mathcal{P}T_Z)$ is contra πgr - $i[contra \pi gr$ -ii]-continuous.
- 7. Let V be i[ii]-open set in Z. Since g is i[ii]-continuous, $g^{-1}(V)$ is i[ii]-open in Y. Since f is contra $\pi g \alpha i[$ contra $\pi g \alpha i[$ continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\pi g \alpha i[\pi g \alpha ii]$ -closed in

- X. Hence *gof*: $(X,ST_X, \mathcal{P}T_X) \rightarrow (Z, ST_Z, \mathcal{P}T_Z)$ is contra $\pi g \alpha i[$ contra $\pi g \alpha i[$ -continuous.
- 8. Let V be i[ii]-open set in Z. Since g is i[ii]-continuous, $g^{-1}(V)$ is i[ii]-open in Y. Since f is contra πgb -i[contra πgb -ii] continuous, $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is πgb - $i[\pi gb$ -ii]-closed in X. Hence gof: $(X,ST_X, \mathcal{P}T_X) \to (Z, ST_Z, \mathcal{P}T_Z)$ is contra πgb -i[contra πgb -ii]-continuous.

Remark 6.3:

- 1. Notice that If f is contra g-i[contra g-ii]-continuous and g is i[ii]-continuous, then gof is contra g-i[contra g-ii]-continuous is equivalent to If f is g-i[g-ii]-continuous and g is contra-i[contra-ii]-continuous, then gof is contra g-i[contra g-ii]-continuous.
- 2. Notice that If f is contra $g\alpha$ -i[contra $g\alpha$ -ii]-continuous and g is i[ii]-continuous, then gof is contra $g\alpha$ -i[contra $g\alpha$ -ii]-continuous is equivalent to If f is $g\alpha$ -i[$g\alpha$ -ii]-continuous and g is contra-i[contra-ii]-continuous, then gof is contra $g\alpha$ -i[contra $g\alpha$ -ii]-continuous
- 3. Notice that If f is contra gr-i[contra <math>gr-ii]-continuous and g is i[ii]-continuous, then gof is contra gr-i[contra <math>gr-ii]-continuous is equivalent to If f is gr-i[gr-ii]-continuous and g is contra-i[contra-ii]-continuous, then gof is contra gr-i[contra <math>gr-ii]-continuous.
- 4. Notice that If f is contra gb-i[contra gb-ii]-continuous and g is i[ii]-continuous, then gof is contra gb-i[contra gb-ii]-continuous is equivalent to If f is gb-i[gb-ii]-continuous and g is contra-i[contra-ii]-continuous, then gof is contra gb-i[contra gb-ii]-continuous.

References

- [1] Ahmad Al-Omari and Mohd. Salmi Md. Noorani, On Generalized b-closed sets. Bull. Malays. Math. Sci. Soc(2),19-30, 32(1) (2009).
- [2] A.S. Mashour, M.E. Abd El- Monsef and S.N. El-Deep. On Precontinuous and weak pre continuous mappings, Proc, Math, Phys. Soc. Egypt., 53, 47-53. 1982.
- [3] C.Janaki, Studies on $\pi g\alpha$ -closed sets in Topology, Ph. D Thesis, Bharathiar University, Coimbatore (2009)
- [4] C.Janaki and V.Jeyanthi-A New Class of Contra Continuous Functions in Topological Spaces-International Refereed Journal of Engineering and Science (IRJES),44-51, 2(2013).
- [5] D. Andrijevic, On b-open sets, Mat. Vesnik 48, 59-64,(1996).
- [6] D.Andrijevic. Semi- preopen sets, Mat. Vesnik, 38 (1), 24-32. (1986).
- [7] E.Ekici, On Contra πg -continuous functions, Chaos, Solitons and Fractals, 71-81,35 (2008).
- [8] H. Maki, P.Sundaram and K. Balachandran: On Generalized homeomorphisms in topological spaces. Bulletin of Fukuoka Uni. Of Edn. Vol.40, Part III,13-21,(1991).
- [9] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets

- 5. Notice that If f is contra πg -i[contra πg -ii]-continuous and g is i[ii]-continuous, then g of is contra πg -i[contra πg -ii]-continuous is equivalent to If f is πg -i[πg -ii]-continuous and g is contra-i[contra-ii]-continuous, then g of is contra πg -i[contra πg -ii]-continuous.
- 6. Notice that If f is contra πgr -i[contra πgr -ii]-continuous and g is i[ii]-continuous, then gof is contra πgr -i[contra πgr -ii]-continuous is equivalent to If f is πgr -i[πgr -ii]-continuous and g is contra-i[contra-ii]-continuous, then gof is contra πgr -i[contra πgr -ii]-continuous.
- 7. Notice that If f is contra $\pi g \alpha i [\text{contra } \pi g \alpha i i] \text{continuous}$ and g is i [i i] continuous, then $g \circ f$ is contra $\pi g \alpha i [\text{contra } \pi g \alpha i i] \text{continuous}$ is equivalent to If f is $\pi g \alpha i [\pi g \alpha i i] \text{continuous}$ and g is contra-i [contra- i i] continuous, then $g \circ f$ is contra $\pi g \alpha i i [\text{contra-} \pi g \alpha i i] \text{continuous}$.
- 8. Notice that If f is contra πgb -i[contra πgb -i]-continuous and g is i[ii]-continuous, then gof is contra πgb -i[contra πgb -i]-continuous is equivalent to If f is πgb -i[πgb -ii]-continuous and g is contra-i[contra-i]-continuous, then gof is contra πgb -i[contra πgb -i]-continuous.

Proof:

- 1. directly by proposition 6.2.1 and proposition 6.1.1.
- 2. directly by proposition 6.2.2 and proposition 6.1.2.
- 3. directly by proposition 6.2.3 and proposition 6.1.3.
- 4. directly by proposition 6.2.4 and proposition 6.1.4.
- 5. directly by proposition 6.2.5 and proposition 6.1.5.
- 6. directly by proposition 6.2.6 and proposition 6.1.6.
- 7. directly by proposition 6.2.7 and proposition 6.1.7.
- 8. directly by proposition 6.2.8 and proposition 6.1.8.
- and-generalized closed sets, Mem. Sci. Kochi Univ. Ser. A. Math.51–63,15(1994).
- [10] I.Arokiarani, K. Balachandran and C.Janaki, On contra- $\pi g \alpha$ -continuous functions, Kochi. J. Math., (3),201-209, (2008).
- [11] J. Dontchev and T. Noiri, Quasi-normal spaces and πg -closed sets, Acta Math. Hungar. 89, 211–219, (3) (2000)
- [12] J. Dontchev, Contra continuous function and strongly S-closed spaces, Internat. J.Math. Math. Sci. 19,303-310, (1996).
- [13] Jeyanthi.V, 2Janaki.C, πgr -Closed Sets In Topological Spaces, Asian Journal of Current Engineering and Maths,241 246. 1: 5 Sep –Oct (2012).
- [14] Kelley, J.C. "Bi-topological space", proc London, math Soc., 71-89 (1963).
- [15] Mashhour, S., M.E. Abd El-Monsef and S.N. El-Deep, onphys. Soc. Egypt, 53: 47-53, (1983).
- [16] M. Caldas, S. Jafari, T. Noiri and M. Simoes, A new generalization of contra-continuity via Levine's g-closed sets, Chaos, Solitons and Fractals 32, 1597-1603, (2007).
- [17] Metin Akdag and Alkan Ozkan- Some Properties of Contra gb-continuous Functions-Journal of New Results in Science ,40-49,1 (2012).

- [18] M.H. Stone. Application of the Theory Boolean rings to general topology, Trans.Amer.Math.Soc.,41, 375-381. (1937).
- [19] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19, 89–96, (1970).
- [20] N. Levine. Semi-open sets, semi-continuity in topological spaces, Amer Math, Monthly, 70, 36-41. (1963).
- [21] O. Njastad. On some classes of nearly open sets, Pacific J. Math. 15, 961-970. (1965).
- [22] S. Bhattacharya, On generalized regular closed sets, Int. J. Contemp. Math. Sciences, Vol. 6, no. 145-152, (201).
- [23] S.I. Mahmood, On Generalized Regular Continuous Functions in Topological spaces, Ibn Al-Haitham Journal for pure and applied sience, No.3, Vol. 25,377-385, (2012).
- [24] Sreeja .D and Janaki. C, On Contra πgb-continuous functions in topological spaces, International Journal of Statistika and Mathematika, E-ISSN-2239-8605, Vol 1, issue 2,pp 46-51, (2011). [25] V. Zaitov. On certain classes of topological spaces and their bicompactification, Dokl Akad Nauk SSSR. 178: 778-9. (1968).

أنواع جديدة من الاستمراربة العكسية في الفضاء ثنائي التبولوجي الفوقي

طه حميد جاسم أ ، على عبد المجيد شهاب أ ، شيماء عادل حميد أ

أقسم الرياضيات ، كلية العلوم الحاسبات والرياضيات ، جامعة تكريت ، تكريت ، العراق قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة تكريت ، تكريت ، العراق

الملخص

في هذا البحث قدمنا صف جديد من الدوال في الفضاء ثنائي التبولوجي الفوقي (عكوس-i] عكوس-i] المستمرة من النمط ii] المستمرة من النمط والمستمرة من النمط والموضوع.