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Abstract:

The purpose of this paper is to provide original results related to the choice of the number of sensors and their
supports for distributed parameter systems. We introduce the notion of exponential observation error. We show
that, the number and location of sensor may be some interest in the existence of regional exponential observation
state.
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1. Introduction

In modern mathematical control theory, observability connection with the sensors structures (the locations
means that it is possible to reconstruct uniquely the and numbers of sensors).

initial state of the dynamic system from the 2.1 System Definition [7]:

knowledge of the input and output [1][15]. Notion of Consider a class of linear distributed parameter

regional observability (extended by El Jai et al. [4- systems where the dynamics can be described by the
5]) is of great importance in current research and given state equation

motivated by many applications [9][16]. The concept 2(t) = Az(t) + Bu(t), 0<t<T

of regional asymptotic analysis was explored by Al- 20) =2, (2.1)

Saphory and El Jai [11] [14], and this concept consist ] . .
to study the behavior of the system not in whole  Where the state space is a Hilbert space and given as

domain Q but only on particular region w of the  Z = L*(€), and the set Q is a bounded open subset of
R™ with smooth boundary 6Q. The domain Q stands

domain (). The purpose of this paper, is to bring the for the geometrical support of the system defined by
light to link between the exponential observability — (2.1). The operator A is a linear operator describing
and sensor structure (see figure 1), we introduce the the dynamics of system (2.1), and its generate a
notion of exponential observation error. We consider strongly continuous semigroup ((S(t))eso ON Z. The
a class of distributed system and develop different operator B € L (U, Z) is the input operator, and u €
results connected with the various types of L2((0,T):U), the space U is a Hilbert control space.
measurements, and we define anew type of strategic The considered system is augmented by the output
sensor which maybe regional exponential strategic  equation

semor. . . y) =Cz(t),  (22)

This paper is organized as follows: section one is  yhere C € L(Z, 0), such that © =L2(0,T;Y) is a
focused on preliminaries and the problem Hilbert observation space.

formulation. In the next section, the characterization 2.2 Observability notion

notion of regional exponential observability is given  For distributed parameter systems, observability can

by using of strategic sensors. The last section is  pe stydied on the autonomous system associated with
devoted to applications with many situations of (2.1)[13], that is:

sensor locations. {z,(t) - Az(), 0<t<T 23)

z(0) = z¢

so that using (2.2) and (2.3), we obtain the following
equalities:
y() = CS(t)z, = Kz, (2.4)

Where
K:Z -0 (2.5)
is linear bounded operator, and therefore
K* e L(0,Z) (2.6)
is given by the following expression:

information K*z = fOTS*(t)C*z(t)dt 2.7
Figurel. The domain Q and various types of Definition 2.3: [2]
Sensors. The system (2.1)-(2.2) is said to be weakly
observable on [0, T] if the following condition
2. Preliminaries fulfilled:
In this section, the conceded system and its Ker{K} = {0} (2.8)
hypothesis will be given, and the concept of  Such that
observability will discussed and analyzed in Ker{K}={z € Z/Kz =0} (2.9)

180



Tikrit Journal of Pure Science 20 (4) 2015

Definition 2.4:[2]
The system (2.1)-(2.2) is said to be exactly
observable on [0,T] if the following condition
satisfied:
”CS(-)ZOHLZ[o,T;Y] =2 vyllzollz, >0
2.5 Observability and sensors
The sensors have an important role in a System
theory. There are give information (measurements)
about the state of the system. Sensors can be of
different types such that maybe are zonal or
pointwise, internal or boundary.
In the following, we give the
definitions for sensors.
Definition 2.6:[8]
Let D; € Q be a closed and f; € L2(D;), a sensor is a
couple (D;, f; )1<i<q Where D; is the support of the
sensor and f; is the spatial distribution of the sensor.
Some sensors have structures such that they allow the
system to be observable or not. In case, when the
measurements of system (2.1) are given by ith
sensors(1 < i < q), then the output function (2.2) is
given by
v, t) =y, ,t), ..

(2.10)

mathematical

Ve ,t)  (211)
with

yi(.,t) =z(b;,t),b;€Q for 1<i<gq
in the pointwise case, and we have

Yiw ) = [, z(w Ofi(Wdp,D; < 0 for 1< <

q (2.13)

in the zonal case (see figure 1).
Now, we recall the definition of strategic sensor.
Definition 2.7 [13]:

A sensor ( Dy, f; )1<i<q IS said to be strategic if the
conceder system is weakly observable.
2.8 Regional observability
An important notion of the framework of a DPS is the
region. It is generally defined as a sub domain of Q in
which we are especially interested. Instead of
considering a problem on the whole domain Q, it is
possible to consider only a subregion w of Q. This
has allowed the generalization of the concepts,
theorems, and results of the analysis of DPSs to any
subdomain of Q [6].
This section is concerned with the notion of regional
observability such that we explained it by the
definitions, examples and theorems.
Firstly, we assume that z is the state of a linear system
with state space Z = L2(Q), and suppose that the
initial state z, is unknown. The problem to be studied
here concerns the reconstruction of the initial state z,
on the subregion ®.
Let Q be a regular bounded open subset of R™ with
boundary 6Q, w be a nonempty subset of Q, and [0, T
] with T >0 be a time interval. We denote Q = Q x
(0, ) and ® = 0Q x (0, o), and we consider the
autonomous system described by the state equation;

(2.12)
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3z N
3 () = Az(y,t)
zin,t) =0

Q
) (2.14)
z(n,0) = zo(w) Q
And the measurements are given by the output
function
y (t) = Cz(1), (2.15)
Now, we consider the following decomposition;

Zyifz€w (2.16)
Zo = { zd  ifzE€EQ/ w,

where z§ is the state to be estimated, and z§ is the
undesired part of the state. The problem of regional
observability is consisting in reconstruct the state z§
with the knowledge of (2.14) and (2.15).
Consider now, the restriction mapping
Xo  LHQ) L) (217)
defined by
XoZ = Z|o (2.18)
where z|, is the restriction of z to w.
Definition 2.9: [3] A system (2.14)—(2.15) is said to
be exactly regionally observable on w (or w-
observable) if
Im(x,K*) = L*(w) (2.19)
Lemma 2.10: [13] A system (2.14)—(2.15) is exactly
w-observable if there exists 9>0 such that, for every
Zo€ L*(w),
”)(wZOHLZ(w) < 19||KXw*ZO||L2[o,T;y]
Definition 2.11: [14]
A system (2.14)—(2.15) is said to be weakly
regionally observable on w (or weakly w-observable)
if

(2.20)

Im(x,K*) = L*(w) (2.21)
Remark 2.12:[3] If the system is observable, then it
is w- observable for any o c Q.
2.13 Regional observability and sensors

Some sensors have structures such that they allow the
system to be observable or regionally observable
(figure.2).

Figure .2 The domain Q, the region w, and
different types of sensors structures.
Definition 2.14:[11] A sensor ( D; , f; )1<i<q 1S said to
be w- strategic if the conceder system is weakly w-

observable.
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Remark 2.15: If the sensor is Q-strategic, then it is
w-strategic.

Proof:

Assume that the sensor (D, f) is Q-strategic sensor for
the conceder system, that is the corresponding system
is weakly observable on Q [13], this lead to the
conceder system is weakly w-observable (the
observability implies to regional observability
(remark 2.8)) [3], and then the sensor (D, f) is w-
strategic.

when supn, = .

2.17 Regional observability state reconstruction
The purpose of this subsection is to give the
estimation of the original state of the system (2.14) on
the subregion of Q [6], that is to give an approach to
reconstruct the state z§ (equation 2.16).

We consider the autonomous system associated with
(2.14) with the hypothesis in section.2, and the
decomposition of the initial state (2.16),
with the out put

_y(®) = C2(0)
Let G and G be the sets defined by
G={g el’(|g=0inQ\ ow}
and
G={g €L*(Q)g=0inww}
then V(g g) € G X G, we have

(88 = J,88dx = [, 88dx + [, 88dx =0

(2.26)
for a given ¢, € G, the system

G, = (Gn):'j
Pnj (b)),

(2.23)
(2.24)

(2.25)

do .

3 (. t) = Ap(u,t) Q

(1, 0) = o) o (227
en,t) =0 e

has a unique solution ¢. The mapping

90 €G = llpollz = fj p*(b, )t (2.28)
defines a semi-norm on G. and b € Q denotes the
given location of the sensor (b, §,), for ¢, € G, the
equation (3.28) gives ¢ which allows to consider the
system

B (1) = —a () - 90,5 -b) Q

Py (0, T) =0 0

Pi(n,t) =0 )
let 1, be the solution of (2.29). consider the operator
A defined by
A G > G (2.30)
@0 = Pg1(¥1(0))
where P;1(1,(0)) denotes the projection of y,(0)
onG*.
Now, consider the system

{onj, fi(. ))12.:9{;-'

(2.29)
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Now, the following proposition gives the guarantee to
the sensor to be w- strategic.

Proposition 2.16:[14]

The suite of sensors ( D;, f; )1<i<q IS w- strategic if
and only if;

g =,

(2)rank G, =1, foralln,n=1,...,J

Where

in the zone case
.

(

22)

in the pointwise case
22 (1) = -4, (1) — (5,08 —b) Q

¥,(u,T) = 0 Q (231

Uy(n,t) =0 (]

if ¢, is such that ¢ leds to 1, (0) = ¥,(0) on (2.31)
w then the system (2.32) looks like the adjoint of the
system to be observed (2.14)-(2.15) and
consequently, the observation problem on ww is
equivalent to solve the equation

Ao = Per(2(0)) (2.32)
Proposition 2.18: [8]
If the sensor (b, §,) is w-strategic, then (2.32) has a
unique solution ¢, € G which corresponds to the
regional state z§ to be observed in w.
2.19 Regional observability and error

When the system is observable, the state
reconstruction leads necessarily to a reconstruction
error (figure.3), also called the observation error.

This subsection concerned to the observation error,
in the usual observation problem, we consider the
error E(z,) defined by

E(zo) = lly(®) — y(t)“LZ[O,T;Y] (2.33)
where § holds for the measurement and y for the
output. In our case, the observation error clearly
depends on the target region w where the state is to
be observed together with the structure and number of
Sensors.

¥y
System

Model %

.1I
Figure 3.the observation error

2.20 Regional exponential observability

In this section the concepts of exponential stable,
exponential detectable and exponential observable are
explained and analyzed also an approach which

observes the state on w exponentially will be avoids.

2.21 Regional exponential detectability
The concept of regional exponential observability
needs some notions which are related to the
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exponential behavior, which is stability, detectability
and observer. The exponential behavior nation has
been extended recently by Al-Saphory and El Jai
[10].
We have the following definitions and propositions as
stated in [8-10].
Definition 2.22: A semigroup (S (t))so is said to be
exponentially regionally stable on w (or wg—
stable) if there exist appositive constants
M,, and a,such that:

IXwSa®ll 2y < Mye %5t 20 (2.34)
If (SA(D)eso IS wg-stable, then for all zy(t) EL?(Q),
the solution of autonomous system associated with
(2.14) satisfies

”Z(t)”LZ(w) = "XwSA(t)ZOHLZ(m) < Mye™ %[z |

(2.35)

and then

limt—»oo”Z(t)”LZ(w) = limtqooll)((A,SA(t)Zolle(w) =0
(2.36)

Definition 2.23:[14] The system (2.14)-(2.15) is said
to be exponentially regionally stable on ® (or wg-
stable) if the operator A generates a semigroup which
is wg-stable.

If it possible to detect exponentially the current state
of the original system in a given sub region w of Q,
then this reconstruction is regional exponential
detectability.

Definition 2.24:[10] The system (2.14) together with
output (2.15) is said to be exponentially regionally
detectable on ® (or wg-detectable) if there exists an
operator H, : L?(0,T,R9) — L?(w) such that

ISSN: 1813 - 1662

(A—H,C) generates a strongly continuous
semigroup (Sy,, (t))¢=o Which is wg-stable.
Proposition 2.25: If the system (2.14)-(2.15) is
regionally exactly observable on w , then it is
regionally exponentially detectable on w.
Proof:
We have if the system is exactly observable then it is
exponentially detectable [13], this is given by the
relation;
3y > 0,llzll; < VIICSA()zllo, Yz € 2(Q)  (2.37)
Now, since the observability implies to regional
observability [15] and detectability lead to regional
exponential detectability [7], thus if the system
(2.14)-(2.15) is regional exactly observable on w
then it is regional exponential detectable on w, and
this is given by the equality;

3y > 0, XS4 ()zll 200y < VICSA()zll0, V2 €

L*(w). (2.38)

Here, the following proposition explains the relation
between regional exponential detectability and sensor
structure. For that purpose, let us consider the set
(@;)of functions of L?2(Q) orthonormal in L?(ww)
associated with the eigenvalues A; of multiplicity m;
and suppose that the system (2.14) has J unstable
modes.
Proposition 2.26: Suppose that there are g sensors
(Di, fi)1<isq and the spectrum of A contains J
eigenvalues with nonnegative real parts. Then the
system (2.14)-(2.15) is wg-detectable if and only if:
(1)g = m,
(2) rank G; =m; for all i, i

1, ..., J with

(0; () fil. 2oy, for zone sensors

G =Gy = @;(bo),

(o; () il Nz (r» for boundary zone sensors

where supm; =m< o andj=1,....,00.

2.27 Regional exponential observability

The regional exponential observation problem consist
of reconstruct the state of the original system
exponentially not on whole domain Q but only on
consider subregion w of Q.

Now, consider the system (2.14)-(2.15) together with
the dynamical system

w -

E\r.u-t) = Fw“-(pﬂ t) + qu(t) + HuY(t) Q
e

Q0

wint)=0
w(y, 0) = wo(u)

(2.40)

where F,, generates a strongly continuous semigroup
(Sg,(t))t = 0 which is stable on Hilbert space W
,G, € L(RP,W)and H, € L(W,R9). The system
(2.40) defines an wg-estimator for y,Tz(y, t)if

1- lime o llw(, ©) = X0 Tz(1 Ol 2y =0 (241)

for pointwise sensors

183

(2.39)

2- x,T maps D(A) into D(F, ) where w(y,t) is the
solution of the system(2.40).
Definition 2.28 [11]:

The system (2.40) specifies a regional exponential
observer (wgz — observer) for the system (2.14)-
(2.15) if the following conditions hold:

1- there exist My€ L(RY,L*(w)) and N, €
L(L?(w)) such that

M,C+ Nyx,T =1, (242
2- xoTA+ Fyx,T = H,Cand G, = x,TB,
3- The system (2.40) defines an wg-estimator for the
state of the system (2.14).

In the following, we define a new type of strategic

sensor which make the system (2.40) form an wg-
observer for (2.14)-(2.15).
Definition 2.29: The system (2.41) is said to be
identity wg-observer for the system (2.14)-(2.15) if Z
=Wand y,T = 1,. In this case, we have F, = A —
H,C and G, = B. Then, the dynamical system (2.41)
becomes:
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%(”' t) = Aw(yt) + Bu(t) + H, (Cw(pnt) —y(,t)) Q

wnt)=10
w(y0)=10

Definition 2.30: The system (2.14)-(2.15) is wg-
observable if there exist a dynamical system (2.41)
which is wg-observer for the original system.

Now, we define the suite of sensor which make the
system (2.14)-(2.15) is wg-observable.

Definition 2.31: The suite of sensor (D;, f;)1<i<q IS
said to be regional exponential strategic (or wg-
strategic) if the observed system is wz-observable.

In the following, an example for the system which
is not observable on Q, but it is wg-observable will
be given.

Example 2.32 : Consider the system

%;’-(P.- t—) = az(u. t) + Z(l-h t} Q

z(n,t) =0 0 (249
z(p0) =0 Q
augmented i
with the output function
y(t) = [z(n8(u—b) dp  (2.45)

Where @ = (0, 1) and b; € Q are the location of
sensors (b;, 6b;) as in (Figure 5). The operator (A +
1) generates a strongly continuous semigroup
(Sa(£)1=0 0N the Hilbert space L? (w).
Consider the dynamical system

() = dwlt) +wut) + HCw(n ) - y(, ) ©
e
(1]

w0t =w(l,t)=0

wiy, 0) = wy(t)

where H € L(R?, W), W is the Hilbert space, and C
W —R9 is linear operator. If b, Q, then the
sensors (b;, 8b;) are not strategic for the unstable
subsystem (2.44) [19] and therefore the system
(2.44)-(2.45) is not exponentially detectable in Q
[20]. Then, the dynamical system (2.46) is not
exponential observer for (2.44)-(2.45).

\

| « < .. ...
| | |
0 B
Figure 4: The domain , the subregion o, and
locations b; of internal pointwise sensors.

w =(0,p) c

(2.46)

Now, we consider the region

(0, 1)and the dynamical system
i-—“('l:u,t) = Awlyt) + wipt) + Hy(Cwip,t) —v(, 1)) ©Q
w(0,t) =wil,t) =0
w(i, 0) = wy(t)

) (2.47)

0

where H,€ L(RY,1*(w)). If b;/f ¢ Q, then the
sensors (b;, 6b;) are w -strategic for the unstable
subsystem of (2.44) [8] and then the system (2.44)-
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6
0

(2.43)

(2.45) is wg-detectable [10]. Therefore, the system
(2.44)-(2.45) is wg-observable by (2.47).
3. Regional exponential observation and
error
We can give the following proposition which show
that the importance of the exponential observation in
minimizing the error between the original state and
estimating state.
The importance of exponential reconstruction for the
state of consider system on « can be seen by study
the error between the original state z(u,t) of
consider system and the estimation state Z(y, t) of the
estimator system which accurse through the
reconstruction, this error is given by the equation
below:
e(ut) = z(uw,t) —z2(u,t) (3.1)

This error calls reconstruction error (observation
error). This problem of error was treatment in the
exponentially reconstruction such that the observation
error converges exponentially to zero as t tends to « ,
this comes from the stable semi-group (S,(t))t = 0
Proposition 3.1. The reconstruction error fading
by exponential observation.
Proof:

Let (S4(t))t = 0 be a semi-group such that :
ISa@)l 20y < Fe™ 5t =
0 for some bositive constants F and g, (3.2)
and in region L*(w) when the regional stable
semigroup (S,(t))t = 0 satisfied:

”XmSA(-)“LZ(w) = Fme_amttt =0,

for some positive constants Fr and or
Thus, we have

lleCuw, Oll 2y =z ©) — w, Ol 2
< ”XwSHm(t)eoan(m)
= Fre_art”eo”LZ(m)

(3.3)

(34)

Consequently, we get

1imt—>oo”e(#' t)”Lz(w) = limt—»oo”)(wSA(t)eolle(u)) =

0. (35

4. Application to sensor location

In this subsection, we apply the previous results to
two dimensional system defined on Disc domain, In
this case, we consider the system

Z(r,6,t) = 42(r,0,8) + z(r,6,8) + Bu(t)  Q
z(r,8,0) = z4(r, 8) 0..(4.1)
z(r,6,t) =0 z

where Q = D(0,1),6 € [0,21],w = D(0,1,,) < Q, the
eigenfunctions and eigenvalues concerning the
system (4.1) are given by the Bessel functions as
follows

7\11- —B%ij,i=0,j=1 (4.2)
where g;; are the zeros of the Bessel functions J;
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05 (7, 6) =fo(15’0,-'r): j=1
@ij, (r,6) = Ji(Byj,r)cos(iB), ij;=1 (43)
@i, (r.6) =] (.B;j,_.?‘) sin(ig), Ljz=1

and the multiplicity m; =2 for all i,j# 0, and
m; =1 fori,j=0.

The following results give information on the
position of pointwise or zonal sensors which are w-
strategic.

4.1 Internal Pointwise Sensor
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Let us consider the case of pointwise sensor located
inside of Q = D(0,1). The system (4.1) is augmented
with the following output function:

y@®) = [,2(r,6;t) fi(r,6,)dr;d6;,0 < 6; <
2r,0<7r; < % (4.4) such that the sensors located in
¢, = (ry,60,) and ¢, = (ry,0,) € Q, (fig. 5).
If there exist i € {1, ..., ]}, such that @ & I, then

the sensors c; andc, may be sufficient for Ijy-
observability, then the dynamical system:

%(r, g,t) = awlr, 8,t) + wir g,t) 4 Bult) + Hy(wir gt =yt @

wir,8,0) = wylr, &)
wir,8,t)=0

Forms an wg-observer for (4.1), thus we obtain the
following result

C2 C1

Figure 5: Disc domain Q, region w and location c1
and c2 of internal poinwise sensors.

n (4.5)
)

Corollary 4.2: The system (4.1)-(4.4) is wg-
observable by the dynamical system (4.5), If

) g g fori=1,.....J.
4.3 Internal Zone Sensor
Consider the system (4.1) together with output
function (4.2) where the sensor supports D,and D,
are located in D(0,1). The output (4.2) can be written
by the form

y(©) = fDiZ(Ti; 0, t) fi(r;, 6;)dr;d6;,0 < 0; <

2m0<n <= (46)

where D, = (r,6,) and D, = (1,,0,) < D(0,1)(see
fig. 6) is the location of sensors (D, f;) and (D, f5),
if there exist i€ {1,..,J} such that f; are not
symmetric with respect to 8; , and @ ¢ 1 and
m; = 1, then the sensors (D, f;) and (D5, f5) may be
sufficient for wg-observability, then the dynamical
system:

% (r,8,t) = Aw(r,08,t) + w(r,6,t) + Bu(t) + H,((w(r,6,t), f(r,8)) — y(t)) @

w(r, 8,0) = wy(r, @)
w(r,6,t) =0

forms an wg-observer for (2.49), thus we obtain the
following result:

D: D:

Figure 6: Disc domain Q, region w and location D1 and
D2 of internal zone sensors.

Corollary 4.4: The system (4.1)-(4.6) is wg-
observable by the dynamical system (4.7), If

0 @7
T

@ ¢ I and f; not symmetric with respect to 9;,
fori=1,.....J.

4.5 Internal Filament Sensor

Consider the case of the observation on the curve
o = Im(y) with y € C(0,1) (see Fig. 7), then we
have the following result;

Figure 7: Disc domain, region w and location ¢ of
internal filament sensor.
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Corollary 4.6: If the observation recovered by
filament sensor (o, 80) such that it is symmetric with
respect to the curve 6 = 0;, then the system (4.1)
with output given by

y@®) = [,2(r, 6, ¢) fi(r, 6,)drd6;,
(4.8)
Is wg-observable if there exist i € {1, ...,J}, such that
ip0 & L
Conclusion
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