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Nomenclature:

\ Term/Symbol H Definition \
\Steady—state flow HFIuid flow that is constant and unchanging with time \
\Time-dependent flow HFIuid flow that changes with time \
Laplace's equation s\o?:r::ii:: differential equation used to obtain solutions for the velocity

Linearized continuity and momentum Equations used to obtain solutions for the stream function

equations

\Non—dimensional velocity HVeIocity expressed in non-dimensional terms \
\Linear steady-state flow HSteady-state flow in which the nonlinear components can be ignored \
\Linear time-dependent flow HTime—dependent flow described by linearized continuity equations \

A wave with a tiny amplitude described by linearized continuity and

Free surface wave :
momentum equations

\Wave propagation HThe movement of waves through a medium \
\Reflection HThe bouncing back of waves from a surface \
\Diffraction HThe bending of waves around an obstacle \

A theory that assumes a linear relationship between the velocity of the

Linear flow theory fluid and pressure

\Turbulence HChaotic and irregular fluid motion \
\Chemical reactors HDevices used for carrying out chemical reactions \
The system of organs and vessels responsible for circulating blood

Circulatory system

through the body

1. Introduction

Pumping from a recovery well is a popular method of extracting fluid from an aquifer or an oil well [1].
However, this process can have certain unintended consequences, particularly when fluid is drained from strata of
varying densities. The fluid withdrawn will originate from the layer surrounding the area of extracting until the
rate of flow reaches a specific limit. When the next layer's fluid exceeds this crucial pace, the quality of the
retrieved fluid can be damaged, such as when water enters an oil recovery well or when saline water infiltrates a
freshwater well. A previous study showed that the flow rate must be lower than the critical value to remove fluid
from the stratum where the extraction spot is identified [2]. The level of underground water at the interface of the
saturated zone will stabilize at a specific depth within a limited area, contingent upon the surface boundary
conditions, in the presence of a line sink. Extraction may occur from single or multiple layers in a stratified aquifer
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with changing salinity. Consequently, there is a potential for hazardous levels of salt to seep into the water used
for drinking or irrigation [3]. The initiation of pumping in a phreatic aquifer can lead to a rapid deterioration of the
strata interface, allowing undesired water or air to enter the pump. To avoid this, the flow rate can be reduced, or
the pumps can be switched off and allowed to rebound before restarting [4]. Furthermore, in some cases, fluid
extraction can cause subsidence, especially in locations with high porosity and permeability [5]. The removal of
fluid from the earth can cause a decrease in pore pressure, leading the soil to compact and sink. To avoid such
effects on the surrounding environment, rigorous monitoring and management of fluid extraction are required.

2. Formulation of Problem

In porous media, prominent contributors to the comprehension of fluid flow include Bear [6, 7], Dagan [8],
Muskat [9], and Polubarinova-Kochina [10]. Their considerable research has established a solid foundation for the
theoretical aspects of this discipline, thereby expanding the knowledge base. As a result, the flow dynamics within
porous media are commonly characterised by Darcy’s Law, which serves as a fundamental paradigm for
understanding this fascinating flow phenomena. These well-known references have significantly contributed to
the development of a complete framework for researching fluid flow in porous media.

q = —kVQ (2.1)

where Q is the piezometric head that is defined as
K
Q= ;(p +pgy), (2.2)

The seepage velocity vector is represented by g, the dynamic viscosity is denoted by u, and the permeability is
denoted by x, which describes the ease of water flows through the medium. Higher rates of flow are associated
with higher permeability levels. Water flows from high-pressure areas to low-pressure areas, according to Darcy's
Law. Assuming that pressure changes do not cause density changes, water can be treated as incompressible. This
leads to the conservation equation, which is given by:

V.q=0 (2.3)

Equation (2.3) describes the conservation of mass in fluid flow by relating the mass flux, or flow rate (q) of the
fluid to the divergence of the flow filed. The equation, which involves the operator denoted by V, states that the
divergence of the mass flux is zero. The concept of mass conservation states that the amount of fluid entering a
specific region is equal to the amount of fluid leaving it. The steady-state flow is obtained by balancing the rate of
change of mass within a particular volume with the flow of mass across its boundaries. The notion is applied under
the assumption that the fluid is incompressible, which means that its density remains constant independent of
pressure variation. This simplifies the fluid flow analyses by ignoring any density changes caused by pressure
variations. Darcy’s Law, when applied, results in:

V.(—kVQ) = 0 (2.4)

Darcy’s Law is a fundamental idea that defines fluid movement through porous materials by connecting the flow
rate to the medium hydraulic properties. The equation for a particular system incorporates the pressure head Q and
indicates that the negative multiplication of hydraulic conductivity and the divergence of the pressure head gradient
is zero. This suggests that the flow of water through the porous medium is in a state of equilibrium, with the flow
rate being counterbalanced:

V2 = 0. (2.5)
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Then, (2.4) or (2.5) must be solved to compute the flow in a porous material along with the required boundary
conditions. The complementary equation will be derived for the undefined interface, which needs to satisfy the
following equation:

5 0w, 0%w,;
Viw, = Ix2 +6y2 =0; -L<x<L{x)<y<l1. (2.6)

These equations are subject to the following boundary conditions:

_(wy=1y=1, —-L<x<L
fe) = {wl =yx=4L, 0<y<l @7
An example of boundary conditions is an impermeable barrier that prevents water from flowing through it. When
a porous medium material encounters a solid boundary that does not allow the passages of fluids, it is necessary
for motion of both the solid boundary and the fluid particle to align in order to prevent the flow of fluid.
Mathematically, this can be represented as:

qn=20 (2.8)

This occurs when the fluid n is perpendicular to the boundary [11]. In other words, the fluid cannot penetrate the
barrier while creating a vacuum at the same time. At any location, the velocity element corresponding to the
boundary must be zero. This criterion can also be stated as the boundary must be a flow streamline. There is
another type of boundary condition that occurs when the ground is saturated and interfaces with air, such as at the
surface of the ground or the barriers of an earth dam. In these situations, the water flows through this surface,
creating a seepage face that marks the point where the water exits the flow region and enters the atmosphere [12].
If the surface is not streamlined, the pressure on it will remain constant at atmospheric pressure, and an
equipotential line will run along its boundary. It can be assumed that the air pressure is constant (p = 0), without
loss of generality. As a result, the definition of w given in equation (2.2) can be expressed as:

K
w = %y. (2.9)

A solid air boundary is one from barrier in the context of saturation flow. A free surface barrier is another important
type of barrier, which often takes the shape of an air-water interface or the interface between two denser layers.
However, the specific location of the free surface is frequently unknown. The most common type of free surface
comprises two requirements. First, as shown by (2.8), there must be a uniform pressure along the interface. Second,
the free surface should be streamlined. The two-dimensional free surface can thus be defined by:

wy — ' (x)Qy (2.10)

on the two-dimensional free surface given by y = ¢’ (x). This condition is the most challenging to address because
the boundary is unknown at the beginning, but it will play a significant role in this project. Different scenarios can
present various conditions, including the case of a porous surface. In this section, the volume flow into the wall is
often proportional to the pressure difference at the porous surface. Additional requirements may be necessary. For
example, consider two layers in a porous media with no withdrawal of freshwater and saltwater of different
densities. The length of the tropical island is L, —L < x < L. In the two layers, the flow satisfies the following
equations:

w =p1+pgy, y>Ex) (2.11)

wy =py+p29y, ¥ < &) (2.12)

When the interface is y = &(x) between two fluids where the upper fluid has a density of p; and is bounded by
air, the density of the lower fluid is p, and the pressure is p; for layers i = 1,2. Pressure p; and atmospheric
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pressure must be equal on the unknown surface, which indicates p, = 0. Given that the tropical island is high,
there is:

W =p1 92z (2.13)
When y = z along the bottom and between the two fluid layers, the pressures along the interface must be equal;

therefore, p;, = p, on y = &(x). Furthermore, if it is assumed that there is no flow at the interface of the fluids
and the lower layer, there exists w, = 0, implying that

0)2 = _pz g Z. (2.14)
As a result, the two fluids at the interface have the following condition:
wy = (p1 —p2)gz, on y = &(x). (2.15)

The following equation is derived by dividing (2.13) by p, g and the non-dimensionless equations:

W, = <1 — Z—f) 9z, on y = &(x). (2.16)

To solve Laplace's equation (2.5) within the range y > é(x), a form must be found that satisfies all of the
parameters, except for the fact that the bottom interface is undefined:

wlx,y)=y+ i Sksinh [(%) n(y — 1)] sin [(%) nk], (217)
k=0

defines additional conditions that must be met, including

{w=(1—1/))y=1, on y= {(x)

0y — ' (X)rg = 0, (2.18)

where a small value of {’ is taken and a large value of ¢ is assumed.

wy, =1+ i Sk (%) 1 cosh [(%) w(y — 1)] sin [(%) rtx]. (2.19)
k

At y=0, equation (2.18) becomes:

-1= ,Z:;Sk (%)T[COS}I (— %) 7 sin [(%) nx]. (2.20)

To apply Orthogonal, both sides of (2.20) are multiplied by sin (i) mx, integrating over the range —L to L, and

having:

f_LL sin (%) x dx = f_L i -5k (;) 7 cosh (— %) 7 sin? (%) nx dx. (2.21)

Ly=o0

Therefore, the Fourier series approximation is:
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Q(x,y)=y+ i Skshin [(%) n(y — 1)] sin [(%) nk] (2.22)
k=0

As a result, the interface shape from (2.15) can be determined as:

{= % LZI:O Sishin <§) T sin [(;) nx” (2.23)

3. Free Surface of Steady and Unsteady Flow

Steady-state and unsteady flows are two common types of free surface flows that are studied using linear
flow theory. Steady-state flow refers to a situation where the fluid flow is constant and unchanging with time,
while time-dependent flow refers to a situation where the fluid flow changes with time. In both cases, Laplace's
equation or linearized continuity and momentum equations can be used to obtain solutions for the velocity
potential and stream function. To analyse time-dependent flows, Laplace's equation or linearized continuity
equations are often used, while steady-state flow requires more advanced techniques to solve the governing
equations [13]. Numerical methods, such as finite difference, finite element, and boundary element methods have
been used to solve the governing equations for various free surface problems [14]. Computational methods have
become increasingly important in the study of free surface flows. In addition, experimental techniques, such as
laser Doppler velocimetry and particle image velocimetry, have been used to measure the velocity and pressure
distribution in the free surface flows [15]. The study of free surface flows using linear flow theory and
computational methods has practical applications in various fields, including fluid mechanics, civil engineering,
naval architecture and oceanography. For linear steady-state flow, it is assumed that the impact of {(x) ony = z
is minor. This is the case when the flow rate is insignificant, or the sink is located at a considerable distance from
the interface. In non-dimensional terms, this means that the parameter m has a very small value. Based on this
assumption, the nonlinear components in equation (2.10) can be ignored, and the conditions can be applied to
y = z instead of y = {(x). Consequently, these conditions undergo a transformation:

w=on y=20<x<1 3.1

c
wy=§,on y=2z0<x<1 (3.2)

It should be noted that the non-dimensional velocity of the recharge water is ¢ /2. As for the linear time-dependent,
the same fundamental method used for the steady problem can be adopted, but this time, the series coefficients
are permitted to vary with time. To solve the complete equations, all surface conditions must be fulfilled at y =
f(x; t), and the coefficients are time-dependent functions. In Figure (3.1), the free surface for both cases is
depicted, with the steady flow represented by the lower curve and the time-dependent flow represented by the
top curve. Measurements for both steady and time-dependent cases are taken at the same height values of y = z
and the value of c¢. The free surface is modelled differently in steady and time-dependent conditions. In steady
linear flow, the free surface is assumed to be a plane or a curve of constant slope, which is often referred to as a
'streamline'. The modelling of the free surface varies depending on the type of flow being studied. In the realm
of steady linear flow, the free surface is presumed to conform to either a planar or curvilinear profile exhibiting
a consistent gradient, commonly known as a streamline. This simplification facilitates the manipulation of the

governing equations of motion, thereby facilitating the straightforward determination of the velocity potential
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and stream function. Within the purview of unsteady flow, a free surface wave pertains to a wave of infinitesimal

amplitude that may be adequately characterized through the utilization of linearized continuity and momentum
equations, thereby adhering to the principles of linear flow dynamic [16]. Consequently, the wave-like behaviour
manifested by free surface engenders the potential to investigate diverse phenomena encompassing wave
propagation, reflection, and diffraction [17]. Moreover, a profound temporal interrelationship exists between
steady and time-dependent linear flow patterns over time, whereas steady linear flow proves particularly valuable
when grappling with scenarios of pronounced, such as the steady of waves and tides in the field of coastal
engineering [18]. Steady linear flow models are better suited for situations in which the flow is relatively constant

and time-invariant, such as the analysis of steady-state fluid dynamics in pipelines and canals [19].

Y axis

1.9999

— Time-Depended

Steady
19999 1 1 1 1 1 1
0 0.1 02 03 0.4 05 06 07 0.8 09 1

KXaxis

Figure (3.1) Free surface shape of the linear solution of (steady and unsteady) flow

The free surface modelling differs with respect to whether the flow is steady or erratic. Time-dependent linear flow
models consider the free surface as a small-amplitude wave, whereas steady linear flow assumes a constant slope
of the free surface. Time-dependent linear flow is better suited to modelling dynamic and changing fluid flows,
whereas steady linear flow is more suited to modelling steady-state fluid dynamics. The employment of a steady
or linear time-dependent flow theory is ultimately determined by the nature of the issue that is being studied. For
example, steady linear flow theory is very beneficial in cases when the flow is uniform and constant, such as in
the design of hydraulic elements, such as weirs and spillways. The computation of flow rate and water levels at
several positions within the structure without the use of sophisticated simulation by using this theory. While the
unsteady linear flow theory is better suited for modelling unsteady fluid flows and wave dynamics. For example,
this theory can be used to predict the behaviour of waves in the ocean over time, such as wave propagation,
reflection, and diffraction. It can also be used to inspect the impacts of ocean currents and tides on coastal
structures, as well as the development of natural-force-resistant coastal defenses. In addition, both linear (steady

and time-dependent) flow theories assume a linear relationship between the velocity of the fluid and pressure, but
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they approach turbulence differently. Both theories of linear steady and time-dependent flow assume a linear

relationship between the velocity of the fluid and pressure, they take distinct approaches to turbulence. The theory
of linear time-dependent flow can investigate laminar and turbulent flow regimes, whereas the theory of steady
linear flow only considers laminar, or non-turbulent, flow regimes. The theory of unsteady linear flow proves that
a complex system is highly valuable when analysing the behaviour of fluids, for example, chemical reactors and
the circulatory system of humans. In conclusion, the two types of theories of linear steady and time-dependent
flow have benefits and drawbacks. For understanding free surface behaviour and fluid dynamics in general, both
of them are helpful tools. The theory to be used is ultimately determined by the application and problem under
consideration. Comprehending the dynamics of free surface flows has a significant importance in a wide range of
engineering and scientific domains. To model such flows, two primary methodologies are employed, steady linear
flow and time-dependent linear flow. These approaches diverge in their assumptions and techniques for
representing the free surface phenomenon. Steady linear flow assumes a flow state that remains unchanged with
time, whereas time-dependent linear flow accounts for temporal variation by conceptualizing the free surface as a
small-amplitude wave. Each approach possesses distinct advantages and limitations, and the selection
characteristic of the problem under investigation. Prudent selection of the appropriate approach is pivotal for

ensuring accurate modelling and analyses of fluid flows in a given context.

3.1 Outcomes and Discussion

The behaviour of a groundwater aquifer system was explored under both steady-state and time-dependent
flow conditions in this work, with the goal of understanding the impact of flow rate, time-dependency, and other
parameters on the aquifers free surface profiles. A code that simulated the steady-state and time-dependent free
surface profiles supported this investigation. A specific solution was examined with aquifer thickness H of 2m,
aquifer length L of 1m, hydraulic conductivity k of 0.2m per day, recharge water velocity ¢ of 0.5m per day, and
a series expansion with 10 terms N. By incorporating these parameters into the code, the behaviour of the aquifer
was simulated. It was assumed that the effect of the function {(x) on the water surface y = z was minimal for the
steady-state flow analysis. This assumption was correct when the flow rate was modest or the sink was positioned
a long distance from the water interface. The system’s equilibrium state was examined under constant flow
conditions by applying the steady-state conditions directly to y=z. The steady-state profile gave useful insights
into the aquifer’s behaviour and allowed for estimating the surface profile under steady-state flow conditions. The
alignment between this work and other works [20] on similar systems validates the current findings. For the steady-
state flow analysis, it was assumed that the effect of the function {(x) on the water surface y=z was negligible. This
assumption was valid when the flow rate was small or when the sink was located at a significant distance from the
water interface. By applying the steady-state conditions directly to y=z, the equilibrium state of the system was
analysed under constant flow conditions. The steady-state profile provided valuable insights into the aquifer's
behaviour and allowed for predicting the surface profile under steady flow conditions. To explore the effects of
time dependence, the analysis was extended to time-dependent flow. By allowing the series coefficients to vary
with time and solving the complete equations, time-dependent free surface profiles were obtained. These profiles
captured the evolution of the water surface over time, considering changes in flow rate, recharge rate, and other
system dynamics. The time-dependent profiles allowed for understanding the implications of time dependence on

the aquifer system's behaviour. Comparing the steady-state and time-dependent profiles for the specific example,
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significant differences were observed. The non-dimensional velocity of the recharge water, represented by c/2,

played a crucial role in determining the system's behaviour. It influenced the shape and magnitude of the surface
profile, along with other factors, such as aquifer quality, recharge rate, and system geometry. The unsteady flow
provided insights into the dynamic nature of the aquifer system, with changes in the surface profile occurring over
time. In conclusion, the current findings highlighted the importance of considering time dependence and flow rate
in understanding and predicting the behaviour of groundwater aquifer systems. The steady-state and time-
dependent free surface profiles demonstrated the effects of these factors on the aquifer's surface behaviour,
depletion rates, and the extent of drawdown. This knowledge is critical for efficient and sustainable utilization of
groundwater resources, as it enables better management and decision-making in groundwater-related projects.
Future research can be built upon these insights to explore more complex scenarios and optimize groundwater
resource utilization in various settings. Furthermore, the non-dimensional velocity of the recharge water, with a
value of, is an important metric. In the case of linear unsteady flow, the same basic method can be applied to the
steady flow, but with allowing the series coefficient to vary with time. To achieve a complete solution for the
equations, all surface requirements must be satisfied, and the coefficients must be time-dependent functions. The
free surface for both the steady and time-dependent instances is shown in Figure (3.1). Readings at the same height
values of z and ¢ were taken to acquire measurements for both steady and time-dependent situations. This allowed
comparing the system's behaviour under various settings and obtaining insight into the implications of time
dependence on the surface profile. The non-dimensional velocity of the recharge water is an important factor that
determines the system’s behaviour. Other factors influencing flow characteristics include aquifer quality, recharge
rate, and system geometry. Understanding these characteristics and their impact on system behaviour is critical
for predicting the surface profile and ensuring efficient and sustainable groundwater resource utilization. The
highest and lowest points of a line sink establish its surface, which is impacted by flow rate values at various sites
along the sink. When the flow rate is high and at a critical value, the coning or drawdown happens extremely
instantly, resulting in a narrow drawdown area. A lower flow rate, however, will cause the lowest points to take
longer to decline, as shown in Figure (3.1). The pace and magnitude of the depletion are also affected by the
pumping rate. A faster pumping rate results in a more rapid depletion, resulting in a more profound and widespread
cone of depression. As a result, the flow rate and pumping rate are important elements in determining the surface
profile and extent of drawdown. There are practical applications to this subject, such as groundwater resource
management; therefore, knowing groundwater behaviour is critical for long term use. Flow conditions can be
studied to learn about depletion rates, drawdown extent, and surface behaviour. Understanding helps this project
management and decision-making. Furthermore, before embarking on infrastructure or land development project,
it is critical to assess their impact on groundwater supplies. Analysing aquifer behaviour under different flow
conditions predicts how changes in flow rate, recharge rate, and system dynamics affect the surface profile of the
aquifer. This data informs environmental impact evaluations and mitigation measures for groundwater resource
preservation. Understanding free surface fluxes in naval architecture is critical for designing and optimising ship
hulls and offshore constructions. Linear flow theory can help forecast wave behaviour, propagation, and the effects
of currents and tides on coastal constructions. The steady linear flow theory is useful for designing a uniform flow
in hydraulic elements, such us weirs and spillways. It computes flow rate and water levels without the need for
sophisticated simulations. For example, it aids in determining flow rate and water levels in various portion of

spillway for dam design. Unsteady linear flow theory simulates dynamic fluid flows and wave dynamics. Over
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time, it predicts wave behaviour, propagation, reflection, and diffraction. It can help researcher’s investigation of

ocean wave behaviour during storms and estimate the influence on coastal buildings like breakwaters and seawalls.
Both linear flow theories assume that fluid velocity and pressure have a linear relationship. However, they treat
turbulence differently. Linear time-dependent flow theory investigates both laminar and turbulent flows, whereas
steady linear flow theory accounts for turbulent flows and their effects. In conclusion, both steady and time-
dependent linear flow theories offer advantages and disadvantages when it comes to understanding fluid dynamics
and free surface behaviour. The theory chosen is dynamics and free surface behaviour. The theory chosen is
determined by the precise application and problem at hand. Choosing the right theory ensures precise modelling

and analysis of fluid flows, which helps to improve engineering and science.

4. Conclusion

The problem of an interface during withdrawal in porous medium flows has received a lot of attention.
This study highlights the significance of utilizing linearized formulations to provide steady and time-dependent
solutions, as well as the importance of considering nonlinear surface circumstances using Fourier techniques.
Furthermore, it emphasises the need of taking into account the aquifer’s finite dimensions as well as the impact of
human activities on the system’s behaviour. Anthropogenic activities, such as urbanisation, agriculture practises,
and sea level rise caused by climate change can all have a considerable part to maintain the supply of freshwater
resource of both human use and the preservation of biological system. In conclusion, this study sheds light on the
behaviour of porous medium flows during withdrawal as well as the sensitive hydrological processes that occur in
coastal aquifer system. The current findings can be used to establish effective and efficient management techniques
for coastal aquifer systems, ensuring the availability of freshwater resources for both human use and ecological
system preservation. Future research can be built upon these insights to explore more complex scenarios and
further improve management techniques for coastal aquifer systems.
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