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ABSTRACT

The primary goal of this work is to introduce dynamic graphs. Specifically, it will
demonstrate that the matrix is the basic matrix of interconnections (adjacency). It
functions to explain a particular graph D's nominal structure based on the
presumption that graph D's lines' functional dependence that is, the matrix E's
elements (edges) are arranged so, that equation. It can be obtained by two scalar
equations and described the evolution of the dynamic matrix E over time.

To transform nonlinear differential equations derived from delay differential
equations (DDES) to linear differential equations, the purpose of using a dynamical
graph. With this method, we applied on the biological problem of Lotaka-Volterra
delay to studying stability by the backstepping method to delay differential equation
(DDE) system to investigate stability on the impact of unsure interconnections
between subsystems and solve it.
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INTRODUCTION

Backstepping is the method used to design
stabilizing controllers. for a specific type of
nonlinear dynamical systems that Petar V.
Kokotovic and others evolved around 1990. The
components of these systems emanate via an
irreducible subsystem that may be stabilized
through different methods. Starting with the known-
stable system. The designer can start the design
process and because of the recursive structure forces
additional controllers to be backed out gradually.
Stabilizing each outer subsystem. The process is
completed after the final external control is reached.
Consequently, it works in a recursive manner step
by step, this process is known as backstepping. A
class for studding non-linear systems of ODEs may
now make advantage of generalized backstepping
design. A model is provided in () to analysis prey-
predator systems andwill be stabilized in this paper
by introducing a generalization methodology built
upon the DDE's backstepping control technique. By
employing the method of steps, this technique
primarily converts the delay differential equations
(DDEs) with retarded arguments into an ordinary
differential equation (ODE) system. In addition,
compared to other established procedures. Thisone

(DDE) asshlall loalinl) dloleo b L slsadl A1Sad Jas

is more effective and less complex. The second
Lyapunov stability approach served as the
foundation for the backstepping control scheme's
basic nonlinear control methodology. Because of its
recursive and methodical design process for
nonlinear feedback control, it has attracted a lot of
interest. Thismethod can prevent the cancellation of
undesirable terms and provides a variety of design
options for accommodating nonlinearities. Another
significant benefit of this approach is that it offersa
systematic, step-by-step algorithm-based process
for designing stabilizing controllers. With this, a
systematic strategy is used for creating feedback
control laws and Lyapunov functions@ 39,
Understanding the stability properties helps assess
the susceptibility of periodic solutions to small
perturbations @,

A basic graph G is composed of two sets of
elements. The vertex (or node) set V(G)) is
nonempty, as well as distinct unordered pairs of the
vertices E(G). Verticesvand u are said to be joined
by an edge denoted by the symbol vu. When an
edge vu connects two vertices vand u ofagraph G
and those vertices v and u are incident with that
edge, we say that the two vertices v and u are
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adjacent. A vertex in common between two distinct
edges e and f makes them adjacent.
Moreover, with vertex set V(G) = {v,v,,..., v}
and E(G) ={ey,e,,...,e,} edge set in a basic
graph G a basic graph G can be represented using
matrices. The n x n adjacency matrix (¢) = [a;;]
is one such matrix, where
{1,if e€ E(G)
1,if e¢E(G)
Graph G 's adjacency matrix has zero entries along
the main diagonal and is symmetric [0,1] -7

ij } |fe:17i'l7j.

1. Application backstepping method with a
dynamical graph to solve a system of DDEs

To stabilize and solve the biological problem in the
delayed Lotaka-Volterra in the following natural
way which given by ®: nonlinear independent
Delay Lotkal Volter to linear DDE
x}(t) = a+bx,(t—1) —cx,(t) x,(t) } ()
X, (8) = e+ cxy(t) x5(t) — dx,(t)
When a=1, b=4, c=0.05,d=0.01, e=2
and 7 =5
the given system (1) becomes after disjunction on
the control functions wu, using the
generalized backstepping technique as follow:

2,0 = a+bx;(t—1) —cxy(t) x,(t) + uy (V)
%, (t) = e+ cx (1) x,(6) — dx, () + uy () }

..(2)

With initial conditionx (t) = ¢4, (t) = 2t + 0.5,
V-1<t<0

The solution for the initial time-step interval [0,1]
can be acquired by employing the subsequent
technique:

2,(&) = 14+ 4¢,,(t—5) —0.05 x, (t) x,(t) }
%, (t) = 24 0.05 x, () x,(t) — 0.01x,(t)

..3)

and u,

0.05
- 0.05

x1 D

-0.01

and then by using the initial conditions, we obtain:

x1()= 1+4Q( —5)+ 0.5) — 0.05 x,(t) xl(t)}
%,(t) =2+ 0.05 x,(t) x,(t) —0.01x,(t)

(4
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Thus, the outcomes of the nonlinear ODEs are as
follows:

x%,(8) = =37+ 8t —0.05 x,(t) x,(t)
%, (t) =24 0.05 x,(t) x,(t) — 0.01x,(t) }

(5)
Therefor, two scalar equations, defines the dynamic
matrix E's evolution over time.

E: x,(t) = —37 + 8t — 0.05 x,(t) x,(¢t)
%, (6) = 2 4 0.05 x,(t) x,(t) — 0.01x,(t) }

.. (6)
suppose that x, and x, are the vertices of a graph
and there is a functional dependence between the
dynamic graph D's lines, which correspond to
elements x, and x, of the adjacency matrix, is such
that the system of ODE'S (for more details see (7 9),
This can be used as a model for particle
concentration: Particle concentrations of species X;
and X, are represented by x; and x,, respectively.
Although the interactions between graph edges can
be randomly determined, when choosing the
concentration of particles model, We wish to
investigate whether relationships between a graph's
edges could be analogous to relationships between
species in a particle concentration.

In order to generalize system (6) for graphs with M
lines (edges), we must first determine which model
to use:

Ei: %,=B+Px;j(t)+Rx;(t) ..(7)

where x(t) € R? representsthe 2 x 2 matrixe of
the dynamic matrix E;, P = (p;;), is constant a
2 X 2 matrix with the proper dimensions, and B is
a constantvector make up the system matrices s.t

B= [_372+ Bt]’ Rx() = [8 —0(.)01] [fclz((?)

set x,(t)x;(t) = x21() = x1(t), x,(O)x,(2) =
x12(t) = x,(t) consequently, thisindicates that the
edge x,, denotes the interaction between x; andx,.
Similarly, x,, denoted the edge outward from x,
and is incident on x,. Now

—0. ®x, ()
Px(®) :[0.(())5 0005] [ﬁié)ﬁié =
[ 0 —0.05] [xl(t)]
0.05 0 x2 ()
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To put a matrix differential equation in standard
vector form that expresses E,, We vectorizeP =
(pij), which is a N x N matrix by stacking the
rows of P to create a vector differential equation.
E,: x = g(t,x) ... (8)

We begin by converting E to a binary matrixP =
(p;;) € RV*N by applying the following rule:
= {(1) i; zlj PGNC)
in order to demonstrate howthe matrix x(t) € RZ.
After many steps which have been illustrated in ©

we get P = [(1)

The following steps will solve and stabilize the
resulting system of differential equations (7) using
the backstepping approach.

Step 1: Set z(t) = x(t) and examine the stability
of the system's first equation (7). As a result,
differentiability z(t) with regard to time gives:

Z2(t) = x(t) = B+ Pz(t) + u(t)
s.t
AN ®
ol =177+ o)+
® ®
K 0] [Z(i) + [Z;(tt)
AQ) ® 0 ®
[Z(i)] [ v 8t] [Z (z)] zZ(t)] [ZZ(E)
z (0] _ —37+8t+22(t)+u1
[Zz(t) - [ 24 2z,(t) —z,(t) + u, ]

z;() = =37+ 8t +z,(t) + u, }
Z,() =2+ z,(t) + z,(t) + u,

Take consider a quadratic form definition of the
Lyapunov function, with x, (t)acting as the virtual
controller, as follow

Vi(2) =322(6)

...(10)

Consequently, V;(z)'s time derivative becomes:

5 _9n _ oV, oz
Vi(2) = at o9z ot
=z(t) z(t)

=2z,(t) (=37 +8t+z,(t)+u, )
= z,(t) (37 +8t — z,(t) + z,(t) —
z;(t) +uy)
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Suppose that x,(t) = a,(z,) is the controller. If
a,(z;) =0and u,(t) = 37 — 8t — z,(t) — z,(t),
then
@) =-z; (1)
It, isa negative definite function, v ¢t € [0,1], Itisa
definite negative function for every tin [0,1]. Thus,
the first equation of system (10) becomes
asymptotically stable due to a,(z;) and u(t) are
under the recursive feedback control. wheneverx,
is considered as a controller, then a,(z,) is a
function of estimation.
Step2: z,(t) = x,(t) — a,(z) isthe definition of
the error between x,(t) and a,(z;) , where
a,(z,) = 0 from first step. Then:
Z,(t) = 2+ z,(t) — z,(0) + u,
The second control Lyapunov function is
considered like this:
V2 (21,25) = Vi(z1) + %Z% )
Hence, the derivative of V; is:
Vo (21,2,) = Vi(21) + 25(t) 2,(2)

= —z{(1) + (O 2+ 2z, () + 2, (1) + uy)
If u, (t) = =2 —z,(t) — z,(t) , then:
Vo(z1,2,) = — 27 (t) — z5(¢) for any t €[0,1],
likewise a negative definite function.
Consequently, the second equation of system (10) is
asymptotically stabilized by the recursive feedback
control u, (t).
As a result, the following feedback controls are
achieved for the first time step:
u (t) = 37— 8t —z,(t) — z,(t)
U, (t) = =2 —2z,(t) — 2z,(t), .. (1)
Therefore, after re-substituting u,; and u, from
equations (10) the resulting system of non-constant
coefficient ODEs is produced.
i1(6) = — x,(0)
X,(t) = — x5(0)
With initial conditions x,(0) = 0.5,
0.25
Which has the solution
x,(t) =0.5¢7t ,
x,(t) = 0.25¢7"

.. (12)

x,(t) =

.. (13)
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Figure (1) depict the x,(t) and x,(t) solutions
throughout the first [0,1] time step interval. Figure
(2) shown the control function wu, (t) and u, (t)

Sketch of the solution of system for escond time step [0, 1]
T T T T T

05 .
h — x1(t)
x2(t)

045

o
o w o
w @ >
T T T

Solution
o

N

(4]

T

gl ~_
0.15- B ]

0.1r

0.05
0

r ¢ c c c c c ¢ ¢
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

Fig. 1: System (10) solution throughout the time step
[01]

40

ul(t)
u2(t) i

35

30

251

20

Control

151

10F

5k

ok

-5

r c c c r r c c c
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

Fig. 2: System (10)'s control function during the time
step [0,1]

The following solutions produced throughout [0,1]
are regarded as forming the second time step
interval's initial conditions ©):

x1(t) = @11 (8) = 0.5, x,(t) = @, () =
0.25¢¢ te[0,1]

Since the outcome in thefirst step is found through
the resolving of the succeeding equations systems
following executing the method of steps, in the same
way, the solution in the second time step interval
[2,4] can be ascertained.

%,() =2+ 0.05 x,(t) x,(t) — 0.01x,(t) + uy(t)

. (14)
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Therefore, the result of the nonlinear ODEs is given

by:
%)= 14+4(0.5e7t5) — 0.05 x4 (t) x,(t) + ul(t)}

.. (15)

Similar to the previous step, and according to our
presumption, the graph D's lines' functional
dependence, which match the matrix ‘s elementsx,
and x,, are such that the system (15). So, according
to the scalar equations, depicts how the dynamic
matrix E develops over time

E: %,(t) = 1+4(0.5e7t+5) — 0.05 x,(t) x,(t) + ul(t)}

.. (16)
At this point, we wish to generalize system (16)
while choosing the mode for graphs having M edges
or lines

E;: x=B+Px(t) ..(@17)
set x5 (D), (8) = x1(6), %, (O)x2(0) = x,(t) s:t

—t+5 —

B= [1 + 4(025e )] [ 0 0.05] [xl(t)] +

005 0 x5(t)
®
[8 —0.01] [ilz(tt)]

which make up the system matrices, the standard
vector obtained by converting a matrix the
differential equation representing E;
previously described model, we get

it R

x,(t
[8 —0. 01] [xlz((t))] * [ 1
[9&1(0] [ 1+ Ze_t+5)] [xz (t)
x,(t) x1(t)
[0 [xl(t) + [ul (t)]
x,@1 Luy (0

[xl(t)] _[1+2e7 + xp(8) +ug ()
x5(t) 2+ x,(t) + x2(0) +u ()
X () =1+ 2e7 5 +x,(t) + ul(t)}
X(1) = 2 +x1(t) + x,(t) +u, (t)
The differential equations system that results is (19).
This can be solved and stabilized by applying the
backsteppingapproach, as shown in the subsequent
steps
Step 1: Let z,(t) = x,(t) Subsequently, time
derivative is

in the

ek

.. (18)

.. (19)
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Z2.(8) = %,(t) = 1+ 2e7t — x, (£) + uy ()
the quadratic Lyapunov function is defined as
follows, with x, (t) treated as a virtual controller:

Vi(z)) =23 (t)
Thus, the derivative turns into
Vi(zy) = z1(8) 2,(t)
=z, ()(14 2675 + x,(8) + u, (1))

=z, (1+ 275 + x,(t) + uy () — 2, () +
Z1(t))
Assumethat the controller x,(t) = a;(z) and if
u, (t) = —1—2e7 %5 — x,(t) — z,(t), then:
Vi(zy) = —zi(t)  for
Error! Bookmark not defined.
This function is negative definite. Thus, the first
equation of the system (19) is asymptotically
stabilized by the recursive feedback control u, (t)
and a,(z;), when x, is taken into account as a
controller, a, represents an estimation function.

every t in tE€

Step2: The definition of the error between a, (z,)

andx, (t) is

z,(t) = x,(t) — @, (z), where a;(z;) =0 from

first step. Afterward:

Z,(t) = %,(1) = 2 + 2, (t) + 2,(t) + up ()

The following function is taken into consideration

for the second control Lyapunov function:

Vy(2y,2,) = Vi(z1) + ;Z%(t)

Hence, the derivative of V; is:

Va(z1,21) = V1(21) + 25(8) Z,()

= —zf () + z,(O 2+ 2, () + z,(t) + u, (1))

If u,(t) = —2—2z,(t) — 22,(t), then:

V,(z,2,) = — z2(t) — z5(t) for any t € [1,2].
Likewise, is a negative definite function.

Consequently, the second equation of system (19) is

asymptotically stabilized by the recursive feedback

control u, (t).

As a result, the following feedback controls are

achieved for the second time step interval [2,4].

u () = —1—2e7 5 —x, () — z,(0),

Uy (t) = =2+ z,(t) — 2z,(¢t), ... (20)
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u, (t) and u, (t) are substituted back in system (19).
The ensuing system of constant coefficient ODEsis

produced:

#1(6) = —x1(0)
#5(8) = —2, (1) ey

with x(1)= 0.18394, x(1) = 0.091970 as
the initial conditions

which has the solution

x,(t) =0.5¢e7t ,

x,(t) = 0.25e~¢ ... (22)

Figure (3) depict the x;(t) and x,(t) solutions |
over the first-time step interval [1,2] with the
control function u, (t) and u, (t) which given in
Figure (4).

0.2 T T T T T T T T T

— x1(t)
0.18 1 x2(t)

0.16

0.14 -

0.12

Solution

0.1f
0.08 o
0.06 ;uw"\mm\mr

0.04

0.02 r r r r r r r r r
1 11 12 13 1.4 15 16 17 18 19 2

Time

Fig. 3: Solution of system (19) over the time step (1, 10)

20+

-40 -

.60~

Control

80}

100
— ul(t)
u2(t)
: : : : : : : : T
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Time

-120

Fi

g. 4: The control function of system (19) over the time
step (1, 10)
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o.1f h

~
T~ ~
0.05 ~—

c c c : c . —
o 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time

Fig. 5: System (14) solution throughout the time step
[0,5]

[ [
u2(t)

50 -

-150

Control

-200 -

-300
0

: c c c c c : c c
0.5 1 15 2 25 3 3.5 4 4.5 5
Time

Fig. 6: System (14)'s control function throughout the
time step [0,5]

carrying out the same approach, we may find the
solutions over the time interval [0,5] which are
illustrated in Fig. 5 with the control function Fig. 6.
CONCLUSION

We study the backstepping method for system of
DDEs with dynamical graph to transform the
nonlinear ODEs outcome from DDEs into linear
ODEs. Through applying backstepping method with
dynamical graph to stabilized and solved biological
problem
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