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ABSTRACT 

The primary goal of this work is to introduce dynamic graphs. Specifically, it will 

demonstrate that the matrix is the basic matrix of interconnections (adjacency). It 

functions to explain a particular graph D's nominal structure based on the 

presumption that graph D's lines' functional dependence that is, the matrix E's 

elements (edges) are arranged so, that equation. It can be obtained by two scalar 

equations and described the evolution of the dynamic matrix E over time.  

To transform nonlinear differential equations derived from delay differential 

equations (DDEs) to linear differential equations, the purpose of using a dynamical 

graph. With   this method, we applied on the biological problem of Lotaka-Volterra 

delay to studying stability by the backstepping method to delay differential equation 

(DDE) system to investigate stability on the impact of unsure interconnections 

between subsystems and solve it. 
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معادلة تفاضلية تباطؤية  لتثبيت  الديناميكي  البياني  الرسم مع  التغذية الراجعة تطبيق طريقة  وحل 
 3نبيل عزالدين عارف  ،2فاضل صبحي فاضل، 1خليل غفار  ميادة

 قسم الفيزياء، كلية العلوم، جامعة تكريت، تكريت، العراق  1
 جامعة النهرين، بغداد، العراققسم الرياضيات وتطبيقات الحاسوب، كلية العلوم،   2
 قسم الرياضيات، كلية علوم الحاسوب والرياضيات، جامعة تكريت، تكريت، العراق  3
 

 الملخص
  خلال  من   الديناميكي البياني  مع الرسم  التفاضلية  التأخير  معادلات  لنظام  التغذية الراجعة طريقة  اعتماد هو  البحث  هذه من   الرئيسي  هدفال

  وقت  في  التطور  يصف  الذي   ،(ODEs)  العادية  التفاضلية  المعادلات  هو مثل في النظام  D  البياني  الرسم  خطوط )الحافات(  بين   الداله اعتماد

  ندرس استقرارية  سوف  ذلك،  بعد(.  الحواف)  الخطوط   ذات  البيانية  للرسوم معمم كنظام  عدديتين  معادلتين  إعطاؤه سيتم  الديناميكية،  المصفوفة

  (DDE)باطؤية تالبيولوجية في معادلة التفاضلية ال لمشكلة وحل
INTRODUCTION  

Backstepping is the method used to design 

stabilizing controllers. for a specific type of 

nonlinear dynamical systems that Petar V. 

Kokotovic and others evolved around 1990. The 

components of these systems emanate via an 

irreducible subsystem that may be stabilized 

through different methods. Starting with the known-

stable system. The designer can start the design 

process and because of the recursive structure forces 

additional controllers to be backed out gradually. 

Stabilizing each outer subsystem. The process is 

completed after the final external control is reached. 

Consequently, it works in a recursive manner step 

by step, this process is known as backstepping. A 

class for studding non-linear systems of ODEs may 

now make advantage of generalized backstepping 

design. A model is provided in (1) to analysis prey-

predator systems and will be stabilized in this paper 

by introducing a generalization methodology built 

upon the DDE's backstepping control technique. By 

employing the method of steps, this technique 

primarily converts the delay differential equations 

(DDEs) with retarded arguments into an ordinary 

differential equation (ODE) system. In addition, 

compared to other established procedures. This one 

is more effective and less complex. The second 

Lyapunov stability approach served as the 

foundation for the backstepping control scheme's 

basic nonlinear control methodology. Because of its 

recursive and methodical design process for 

nonlinear feedback control, it has attracted a lot of 

interest. This method can prevent the cancellation of 

undesirable terms and provides a variety of design 

options for accommodating nonlinearities. Another 

significant benefit of this approach is that it offers a 

systematic, step-by-step algorithm-based process 

for designing stabilizing controllers. With this, a 

systematic strategy is used for creating feedback 

control laws and Lyapunov functions(2, 3). 

Understanding the stability properties helps assess 

the susceptibility of periodic solutions to small 

perturbations (4). 

 A basic graph 𝐺  is composed of two sets of 

elements. The vertex (or node) set  𝑉(𝐺) ) is 

nonempty, as well as distinct unordered pairs of the 

vertices 𝐸(𝐺). Vertices v and u are said to be joined 

by an edge denoted by the symbol 𝑣𝑢. When an 

edge 𝑣𝑢 connects two vertices 𝑣 and 𝑢 of a graph 𝐺 

and those vertices 𝑣  and 𝑢  are incident with that 

edge, we say that the two vertices 𝑣  and 𝑢  are 
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adjacent. A vertex in common between two distinct 

edges e and f makes them adjacent.  

Moreover,  with vertex set 𝑉(𝐺) = {𝑣1,𝑣2 ,… , 𝑣𝑛} 

and   𝐸(𝐺) = {𝑒1 ,𝑒2 , … , 𝑒𝑚}  edge set in a basic   

graph G a basic graph 𝐺  can be represented using 

matrices. The 𝑛 × 𝑛  adjacency matrix (𝐺) = [𝑎𝑖𝑗] 

is one such matrix, where  

𝑎𝑖𝑗 = {
1, 𝑖𝑓   𝑒 ∈ 𝐸(𝐺)

1, 𝑖𝑓   𝑒 ∉ 𝐸(𝐺)
}  if 𝑒 = 𝑣𝑖𝑣𝑗. 

 Graph  𝐺 's adjacency matrix has zero entries along 

the main diagonal and is symmetric [0,1] (5-7). 

1. Application backstepping method with a 

dynamical graph to solve a system of DDEs 

  To stabilize and solve the biological problem in the 

delayed Lotaka-Volterra in the following natural 

way which given by (8): nonlinear independent 

Delay Lotkal Volter to linear  DDE 

𝑥̇1(𝑡) =  𝑎 + 𝑏𝑥1(𝑡 − 𝜏) − 𝑐 𝑥2(𝑡) 𝑥1(𝑡) 
𝑥̇2(𝑡) = 𝑒 + 𝑐 𝑥1(𝑡) 𝑥2(𝑡) − 𝑑𝑥2(𝑡)       

}   …(1) 

When 𝑎 = 1, 𝑏 = 4, 𝑐 = 0.05, 𝑑 = 0.01, 𝑒 = 2 

and 𝜏 =5  

the given system (1) becomes after disjunction on 

the control functions 𝑢1  and 𝑢2  using the 

generalized backstepping technique as follow: 

𝑥̇1(𝑡) =  𝑎 + 𝑏𝑥1(𝑡 − 𝜏) − 𝑐 𝑥2(𝑡) 𝑥1(𝑡) + 𝑢1(t) 
𝑥̇2(𝑡) = 𝑒 + 𝑐 𝑥1(𝑡) 𝑥2(𝑡) − 𝑑𝑥2(𝑡) +  𝑢2(t)       

}     

…(2) 

With initial condition 𝑥1(𝑡) = 𝜑10(𝑡) = 2𝑡 + 0.5 ,  

∀ −1 ≤ 𝑡 ≤ 0 

The solution for the initial time-step interval [0,1] 

can be acquired by employing the subsequent 

technique: 

𝑥̇1(𝑡) =  1 + 4𝜑10(𝑡 − 5) − 0.05 𝑥2(𝑡) 𝑥1(𝑡) 
𝑥̇2(𝑡) = 2 + 0.05 𝑥1(𝑡) 𝑥2(𝑡) − 0.01𝑥2(𝑡)     

}   

…(3) 

 

and then by using the initial conditions, we obtain:  

𝑥̇1(𝑡) =  1 + 4(2(𝑡 − 5) + 0.5) − 0.05 𝑥2(𝑡) 𝑥1(𝑡)

𝑥̇2(𝑡) = 2 + 0.05 𝑥1(𝑡) 𝑥2(𝑡) − 0.01𝑥2(𝑡)                  
}     

…(4) 

Thus, the outcomes of the nonlinear ODEs are as 

follows: 

 
𝑥̇1(𝑡) =  −37 + 8𝑡 − 0.05 𝑥2(𝑡) 𝑥1(𝑡)             
𝑥̇2(𝑡) = 2 + 0.05 𝑥1(𝑡) 𝑥2(𝑡) − 0.01𝑥2(𝑡)       

}   … 

(5) 

Therefor, two scalar equations, defines the dynamic 

matrix E's evolution over time. 

  𝐄:    𝑥̇1(𝑡) = −37 + 8𝑡 − 0.05 𝑥2(𝑡) 𝑥1(𝑡)            
      𝑥̇2(𝑡) = 2 + 0.05 𝑥1(𝑡) 𝑥2(𝑡) − 0.01𝑥2(𝑡)

} 

… (6)  

suppose that 𝑥1 and 𝑥2 are the vertices of  a graph 

and there is a functional dependence between the 

dynamic graph D's lines, which correspond to 

elements 𝑥1 and 𝑥2 of the adjacency matrix, is such 

that the system of ODE'S (for more details see (7, 9).  

This can be used as a model for particle 

concentration: Particle concentrations of species 𝑋1 

and  𝑋2 are represented by 𝑥1  and 𝑥2, respectively. 

 Although the interactions between graph edges can 

be randomly determined, when choosing the 

concentration of particles model, We wish to 

investigate whether relationships between a graph's 

edges could be analogous to relationships between 

species in a particle concentration.  

In order to generalize system (6) for graphs with M 

lines (edges), we must first determine which model 

to use: 

𝐄𝟏:    𝑥̇𝑖 = 𝐵 + 𝑃 𝑥𝑖𝑗(𝑡) + 𝑅𝑥𝑖(𝑡)   ...( 7)  

where 𝑥(𝑡) ∈ 𝑅2 represents the 2 × 2  matrixe  of 

the dynamic matrix 𝐄𝟏 , 𝑃 = (𝑝𝑖𝑗),  is constant a 

2 × 2  matrix with the proper dimensions, and 𝐵 is 

a constant vector make up the system matrices s.t  

𝐵 = [
−37 + 8𝑡

2
],   𝑅𝑥(𝑡) = [

0 0
0 −0.01

] [
𝑥1(𝑡)

 𝑥2(𝑡)
] 

set 𝑥2(𝑡)𝑥1(𝑡) = 𝑥21(𝑡) = 𝑥1(𝑡),  𝑥1(𝑡)𝑥2(𝑡) =

𝑥12(𝑡) = 𝑥2(𝑡)  consequently, this indicates that the 

edge 𝑥21 denotes the interaction between 𝑥1 and 𝑥2. 

Similarly, 𝑥21  denoted the edge outward from 𝑥1 

and is incident on 𝑥2. Now   

𝑃𝑥(𝑡) = [
0 −0.05

0.05 0
] [

𝑥2(𝑡)𝑥1(𝑡)

𝑥1(𝑡)𝑥2(𝑡)
] ⟹

[
0 −0.05

0.05 0
] [

𝑥1(𝑡)

 𝑥2(𝑡)
],      
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To put a matrix differential equation in standard 

vector form that expresses 𝐄𝟏, We vectorize 𝑃 =

 (𝑝𝑖𝑗), which is a 𝑁 ×  𝑁 matrix by stacking the 

rows of 𝑃 to create a vector differential equation. 

𝐄𝟐 ∶  𝑥̇  =  𝑔(𝑡, 𝑥)          … (8) 

We begin by converting 𝐸 to a binary matrix 𝑃̅ =

(𝑝̅𝑖𝑗) ∈ ℝ𝑁×𝑁 ,by applying the following rule: 

𝑝̅𝑖𝑗 = {
1,   𝑖𝑓  𝑝𝑖𝑗 ≠ 0

0,   𝑖𝑓  𝑝𝑖𝑗 = 0
    … (9) 

in order to demonstrate how the matrix 𝑥(𝑡)  ∈  𝑅2.  

After many steps which have been illustrated in (5) 

we get 𝑃 = [0 1
1 0

],   

The following steps will solve and stabilize   the 

resulting system of differential equations (7) using 

the backstepping approach. 

Step 1: Set  𝑧(𝑡) = 𝑥(𝑡) and examine the stability 

of the system's first equation (7).  As a result, 

differentiability 𝑧(𝑡) with regard to time gives: 

𝑧̇(𝑡) = 𝑥̇(𝑡) = 𝐵 + 𝑃𝑧(𝑡) + 𝑢(𝑡)  

s.t 

[
𝑧̇1(𝑡)

𝑧̇2(𝑡)
] = [

−37 + 8𝑡
2

] + [
0 1
1 0

] [
𝑧1 (𝑡)

𝑧2(𝑡)
] +

[
0       0
0       1

] [
𝑧1(𝑡)

𝑧2(𝑡)
] + [

𝑢1(𝑡)

𝑢2(𝑡)
]  

[
𝑧̇1(𝑡)

𝑧̇2(𝑡)
] = [

−37 + 8𝑡
2

] + [
𝑧2(𝑡)

𝑧1 (𝑡)
] +  [

0
 𝑧2(𝑡)

] + [
𝑢1 (𝑡)

𝑢2(𝑡)
]  

[
𝑧̇1(𝑡)
𝑧̇2(𝑡)

] = [
−37 + 8𝑡 + 𝑧2(𝑡) + 𝑢1       
2 + 𝑧1(𝑡) − 𝑧2(𝑡) + 𝑢2      

]  

𝑧̇1(𝑡) = −37 + 8𝑡 + 𝑧2(𝑡) + 𝑢1         
𝑧̇2(𝑡) = 2 + 𝑧1(𝑡) + 𝑧2(𝑡) + 𝑢2         

}     …(10) 

Take consider a quadratic form definition of the 

Lyapunov function, with 𝑥2(𝑡)acting as the virtual 

controller, as follow 

𝑉1(𝑧) =
1

2
𝑍2(𝑡)  

Consequently, 𝑉1(𝑧)'s time derivative becomes: 

𝑉̇1(𝑧) =
𝜕𝑉1

𝜕𝑡
=

𝜕𝑉1

𝜕𝑧
 
𝜕𝑧

𝜕𝑡
  

             = 𝑧(𝑡) 𝑧̇(𝑡)  

             = 𝑧1(𝑡) (−37 + 8𝑡 + 𝑧2(𝑡) + 𝑢1  )  

             =  𝑧1(𝑡) (−37 + 8𝑡 − 𝑧2(𝑡) + 𝑧1(𝑡) −

𝑧1(𝑡) + 𝑢1  )   

Suppose that 𝑥2(𝑡) = 𝛼1(𝑧1) is the controller. If 

𝛼1(𝑧1) = 0 and 𝑢1(𝑡) =  37 − 8𝑡 − 𝑧2(𝑡) − 𝑧1(𝑡), 

then 

𝑉̇1(𝑍) = −𝑧1
2(𝑡)  

It, is a negative definite function, ∀ 𝑡 ∈ [0,1], It is a 

definite negative function for every 𝑡 in [0,1]. Thus, 

the first equation of system (10) becomes 

asymptotically stable due to 𝛼1(𝑧1) and 𝑢(𝑡) are 

under the recursive feedback control. whenever 𝑥2 

is considered as a controller, then 𝛼1(𝑧1)  is a 

function of estimation. 

Step 2:  𝑧2(𝑡) = 𝑥2(𝑡) − 𝛼1(𝑧1) is the definition of 

the error between 𝑥2(𝑡)  and 𝛼1(𝑧1) , where 

𝛼1(𝑧1) = 0 from first step. Then:  

𝑧̇2(𝑡) = 2 + 𝑧1(𝑡) − 𝑧2(𝑡) + 𝑢2  

The second control Lyapunov function is 

considered like this:  

𝑉2(𝑧1, 𝑧2) = 𝑉1(𝑧1) +
1

2
𝑧2

2(𝑡)  

Hence, the derivative of 𝑉2 is: 

𝑉̇2(𝑧1, 𝑧2) = 𝑉̇1(𝑧1) + 𝑧2(𝑡) 𝑧̇2(𝑡)  

  = −𝑧1
2(𝑡) + 𝑧2(𝑡)(2 + 𝑧1(𝑡) + 𝑧2(𝑡) + 𝑢2)  

If 𝑢2(𝑡) = −2 − 𝑧1(𝑡) − 𝑧2(𝑡) , then: 

𝑉̇2(𝑧1, 𝑧2) = − 𝑧1
2(𝑡) − 𝑧2

2(𝑡)   for any  𝑡 ∈ [0,1] , 

likewise a negative definite function. 

Consequently, the second equation of system (10) is 

asymptotically stabilized by the recursive feedback 

control 𝑢2(𝑡). 

 As a result, the following feedback controls are 

achieved for the first time step: 

𝑢1(𝑡) =  37 − 8𝑡 − 𝑧2(𝑡) − 𝑧1(𝑡)  

𝑢2(𝑡) = −2 − 𝑧1(𝑡) − 2𝑧2(𝑡),      … (11) 

Therefore, after re-substituting 𝑢1  and 𝑢2  from 

equations (10) the resulting system of non-constant 

coefficient ODEs is produced. 

𝑥̇1(𝑡) = − 𝑥1(𝑡)        
𝑥̇2(𝑡) = − 𝑥2(𝑡)         

  … (12) 

With initial conditions 𝑥1(0) = 0.5  ,      𝑥2(𝑡) =

0.25     

Which has the solution  

𝑥1(𝑡) = 0.5𝑒−𝑡    ,    

𝑥2(𝑡) = 0.25𝑒−𝑡     … (13) 

https://doi.org/10.25130/tjps.v30i5.1738
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 Figure (1) depict the 𝑥1(𝑡)  and 𝑥2(𝑡)  solutions 

throughout the first [0,1] time step interval. Figure 

(2) shown the control function 𝑢1(𝑡) and 𝑢2(𝑡)    
 

 

Fig. 1: System (10) solution throughout the time step 

[0,1] 

 

 

Fig. 2: System (10)'s control function during the time 

step [0,1] 

 

The following solutions produced throughout [0,1] 

are regarded as forming the second time step 

interval's initial conditions (8) :  

𝑥1(𝑡) = 𝜑11(𝑡) = 0.5𝑒−𝑡 , 𝑥2(𝑡) = 𝜑21(𝑡) =

0.25𝑒−𝑡       𝑡 ∈ [0,1] 

Since the outcome in the first step is found through 

the resolving of the succeeding equations systems 

following executing the method of steps, in the same 

way, the solution in the second time step interval 

[2,4] can be ascertained. 

𝑥̇1(𝑡) =  1 + 4𝜑11(𝑡 − 5) − 0.05 𝑥1(𝑡) 𝑥2(𝑡) + 𝑢1(𝑡)   

𝑥̇2(𝑡) = 2 + 0.05 𝑥1(𝑡) 𝑥2(𝑡) − 0.01𝑥2(𝑡) + 𝑢2(𝑡)        
    

… (14) 

Therefore, the result of the nonlinear ODEs is given 

by: 

  
𝑥̇1(𝑡) =  1 + 4(0.5𝑒−𝑡+5) − 0.05 𝑥1(𝑡) 𝑥2(𝑡) + 𝑢1(𝑡)

𝑥̇2(𝑡) = 2 + 0.05 𝑥1(𝑡) 𝑥2(𝑡) − 0.01𝑥2(𝑡) + 𝑢2(𝑡)      
}  

… (15) 

Similar to the previous step, and according to our 

presumption, the graph D's lines' functional 

dependence, which match the matrix ‘s elements 𝑥1 

and 𝑥2, are such that the system (15).  So, according 

to the scalar equations, depicts how the dynamic 

matrix E develops over time  

𝐄:     𝑥̇1(𝑡) =  1 + 4(0.5𝑒−𝑡+5) − 0.05 𝑥1(𝑡) 𝑥2(𝑡) + 𝑢1(𝑡)

   𝑥̇2(𝑡) = 2 + 0.05 𝑥1(𝑡) 𝑥2(𝑡) − 0.01𝑥2(𝑡) + 𝑢2(𝑡)
}  

… (16) 

At this point, we wish to generalize system (16) 

while choosing the mode for graphs having M edges 

or lines  

𝐄𝟏:    𝑥̇ = 𝐵 + 𝑃𝑥(𝑡)    ... (17)  

set 𝑥2(𝑡)𝑥1(𝑡) = 𝑥1(𝑡),  𝑥1(𝑡)𝑥2(𝑡) = 𝑥2(𝑡) s.t  

𝐵 = [ 1 + 4(0.5𝑒−𝑡+5)
2

] ,  𝑃 = [
0 −0.05

0.05 0
] [

𝑥1(𝑡)

 𝑥2(𝑡)
] +

[
0 0
0 −0.01

]  [
𝑥1(𝑡)

 𝑥2(𝑡)
] 

which make up the system matrices, the standard 

vector obtained by converting a matrix the 

differential equation representing 𝐄𝟏  in the 

previously described model, we get 

[
𝑥̇1(𝑡)
𝑥̇2(𝑡)

] = [ 1 + 4(0.5𝑒−𝑡+5)
2

] + [0 1
1 0

] [
𝑥1(𝑡)

 𝑥2(𝑡)
] +

[0 0
0 −0.01

] [
𝑥1(𝑡)

 𝑥2(𝑡)
] + [

𝑢1

𝑢2
]   … (18)  

[
𝑥̇1(𝑡)
𝑥̇2(𝑡)

] = [ 1 + 2𝑒−𝑡+5)
2

] + [
𝑥2(𝑡)

 𝑥1(𝑡)
] +

[0 0
0 1

] [
𝑥1(𝑡)

 𝑥2(𝑡)
] + [

𝑢1(𝑡)
𝑢2(𝑡)

]  

[
𝑥̇1(𝑡)
𝑥̇2(𝑡)

] = [
1 + 2𝑒−𝑡+5 + 𝑥2(𝑡) + 𝑢1(𝑡)

2 + 𝑥1(𝑡) + 𝑥2(𝑡) + 𝑢2(𝑡)
]  

𝑥̇1(𝑡) = 1 + 2𝑒−𝑡+5 + 𝑥2(𝑡) + 𝑢1(𝑡)

𝑥̇2(𝑡) = 2 + 𝑥1(𝑡) + 𝑥2(𝑡) + 𝑢2(𝑡)   
}    … (19) 

The differential equations system that results is (19). 

This can be solved and stabilized by applying the 

backstepping approach, as shown in the subsequent 

steps   

Step 1: Let 𝑧1(𝑡) = 𝑥1(𝑡)  Subsequently, time 

derivative is   
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𝑧̇1(𝑡) = 𝑥̇1(𝑡) = 1 + 2𝑒−𝑡+5 − 𝑥2(𝑡) + 𝑢1(𝑡)  

the quadratic Lyapunov function is defined as 

follows, with 𝑥2(𝑡) treated as a virtual controller: 

𝑉1(𝑧1) =
1

2
𝑧1

2(𝑡)  

Thus, the derivative turns into  

𝑉̇1(𝑧1) = 𝑧1(𝑡) 𝑧̇1(𝑡)  

 = 𝑧1(𝑡)(1 + 2𝑒−𝑡+5 + 𝑥2(𝑡) + 𝑢1(𝑡))  

   = 𝑧1(𝑡)(1 + 2𝑒−𝑡+5 + 𝑥2(𝑡) + 𝑢1(𝑡) − 𝑧1(𝑡) +

𝑧1(𝑡))  

Assume that the controller 𝑥2(𝑡) = 𝛼1(𝑧1)  and if 

 𝑢1(𝑡) = −1 − 2𝑒−𝑡+5 − 𝑥2(𝑡) − 𝑧1(𝑡), then: 

𝑉̇1(𝑧1) = −𝑧1
2(𝑡)  for every 𝑡 in 𝑡 ∈

Error!  Bookmark not defined. 

This function is negative definite. Thus, the first 

equation of the system (19) is asymptotically 

stabilized by the recursive feedback control 𝑢1(𝑡) 

and 𝛼1(𝑧1),  when 𝑥2  is taken into account as a 

controller, 𝛼1 represents an estimation function.  

Step2: The definition of the error between 𝛼1(𝑧1)  

and𝑥2(𝑡) is 

𝑧2(𝑡) = 𝑥2(𝑡) − 𝛼1(𝑧1),  where 𝛼1(𝑧1) = 0  from 

first step. Afterward:   

𝑧̇2(𝑡) = 𝑥̇2(𝑡) = 2 + 𝑧1(𝑡) + 𝑧2(𝑡) + 𝑢2(𝑡)  

The following function is taken into consideration 

for the second control Lyapunov function:  

𝑉2(𝑧1, 𝑧1) = 𝑉1(𝑧1) +
1

2
𝑧2

2(𝑡)  

Hence, the derivative of 𝑉2 is: 

𝑉̇2(𝑧1, 𝑧1) = 𝑉̇1(𝑧1) + 𝑧2(𝑡) 𝑧2̇(𝑡)  

= − 𝑧1
2(𝑡) + 𝑧2(𝑡)(2 + 𝑧1(𝑡) + 𝑧2(𝑡) + 𝑢2(𝑡))  

If 𝑢2(𝑡) = −2 − 𝑧1(𝑡) − 2𝑧2(𝑡), then:  

𝑉̇2(𝑧1, 𝑧1) = − 𝑧1
2(𝑡) − 𝑧2

2(𝑡) for any 𝑡 ∈ [1,2]. 

  Likewise, is a negative definite function. 

Consequently, the second equation of system (19) is 

asymptotically stabilized by the recursive feedback 

control 𝑢2(𝑡). 

As a result, the following feedback controls are 

achieved for the second time step interval [2,4].  

𝑢1(𝑡) = −1 − 2𝑒−𝑡+5 − 𝑥2(𝑡) − 𝑧1(𝑡),   

𝑢2(𝑡) = −2 + 𝑧1(𝑡) − 2𝑧2(𝑡),  … (20) 

𝑢1(𝑡) and 𝑢2(𝑡) are substituted back in system (19). 

The ensuing system of constant coefficient ODEs is 

produced: 

𝑥̇1(𝑡) = −𝑥1(𝑡)        
𝑥̇2(𝑡) = −𝑥2(𝑡)       

}  …(21) 

with  𝑥(1) =    0.18394,   𝑥(1) =  0.091970   as 

the initial conditions   

which has the solution  

𝑥1(𝑡) = 0.5𝑒−𝑡    ,    

𝑥2(𝑡) = 0.25𝑒−𝑡      … (22) 

Figure (3) depict the 𝑥1(𝑡)  and 𝑥2(𝑡) solutions I 

over the first-time step interval [1,2]  with the 

control function 𝑢1(𝑡)  and 𝑢2(𝑡)  which given in 

Figure (4). 
 

 
Fig. 3: Solution of system (19) over the time step (1, 10) 

 

 

Fig. 4: The control function of system (19) over the time 

step (1, 10) 
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Fig. 5: System (14) solution throughout the time step 

[0,5] 

 

 
Fig. 6: System (14)'s control function throughout the 

time step [0,5] 

 

carrying out the same approach, we may find the 

solutions over the time interval [0,5] which are 

illustrated in Fig. 5 with the control function Fig. 6.  

CONCLUSION  

We study the backstepping method for system of 

DDEs with dynamical graph to transform the 

nonlinear ODEs outcome from DDEs into linear 

ODEs. Through applying backstepping method with 

dynamical graph to stabilized and solved biological 

problem 
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