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1. Introduction

In 1971 [1] defined semi-closure in topological space.
In (1982) [2] studied the concept of closure operator.
In (2003) [6] used the concepts of open sets, closure
operator, and semi-closure to present and analyze
several weak separation axioms. Later, [7] used the
notions of pre-open sets and pre-closure operator to
develop certain weak separation axioms. Some
theorems of this nature theorem have been proved by
some researchers: Let (X,T) be a T.S. (topological
space) and A subset of X, is the intersection of all
closed (resp. semi-closed, pre-closed, semi-pre-
closed, b-closed) sets of X containing A is called the
closure of A the closure of A [5](resp. semi-closure
[1], pre-closure [3], semi-pre-closure [4], b-closure
[5]) of A

In (2018) [8] introduced mg*B-closure in a topology
space. In the year (2020) [9] and [10] introduced Pre-
weakly generalized closed sets and presented Soft —
interior and soft —closure in soft topology .

In this paper we present a new class of different
operators we knew him on regular generalized open
sets namely (A regular generalized*, A regular
generalized**, A generalized** regular) (briefly,
Arg*, A rg**, A g **r, respectively) and study some
of their properties with some important theorems.

2. Preliminaries
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I n this paper we introduce a new classes of operators namely (A regular

generalized*, A regular generalized**, A generalized ““regular) (briefly,
Arg,Arg , A g T, respectively) in topological spaces and study some of
their properties with some important theorems.

This section of the manual lists some of the required
definitions and theorems.

Definition 2.1[11]: A subset A of a space X is called
regular  generalized*- open  [resp.  regular
generalized - open] set (briefly rg*-0(x), rg**-o(x))
if int(A) €U , whenever UCA and U is regular [resp.
pre regular] closed set < X.

Definition 2. 2[11]: A subset A of a space X is
called generalized** regular open set (briefly, g**r-
o(x)) if Rint (A) €U , whenever UCA and U is pre-
regular closed set =X.

Definition 2.4[12]: Let (X, 7) is a topological space
as well as the operator Agr (F)= N{U:F cU, U is
generalized regular open set € X}

3. On Some generalized recent operators in
topological spaces

Definition 3.1: The new operators are listed below.
Allow K to take the initiative = [rg*,rg**] sets
Ag(A)=n{U: A cU, Uis Ke (rg*rg**) open <
X}

Example 3.2:.  X={a,b,c,d,e} , T ={0 X{a, c,
e}{a b e} {a,b}}

t°={@ X,{d}{b, d}.{c .d, e}}

R-o(x)={ @ , X}, R-c(x)={X, @}.

PreR-

o(x)={@.X {a}.{b}.{c}.{d}.{e}.{a.b}.{a,c}.{ae}{a,
d}.{b.c}.{b.d},
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{b,e}.{c.e}.{c.d}{a,b,c}.{a,b,d} {ab,e} {ac.e}{ac,
d}.{b,c,d},{b,c.e}.,{c,d,e}
{b,d,e}{a,de}{ab,c,d}{ab,c,e}{ac,de}{b,cde}
{a,b,d,e}}
PreRc(x)={®,X,{a},{b},{c}.{d}.{e}.{a,b}.{ac}.{ae
}.{a,d}{b,c}{b,d}{b,e}{c.e}{c,d}.{d.e} {ab,d}{a
b,e}.{ac,e}{ac,d}.{b,c,d}{b,ce}{cde}{b,de}{
a,d.e}.{ab,c,d}{ab,c.e}{acde}{b,cde}{ab,de}

}

A={a b c}, AK (A)=X ,

K=(rg*, rg**)-open sets={@,X{a},{d}.{e}.{b, c}.{b,
d}.{c ,e}.{d ,e},

{a, c,d}{b,c.d}.{a.d e}{c, d, e},

{b,c.d e}}

Lemma 3.3: (X, 1) be a topological space, A :
g(x) = q(x) is operator which satisfies the properties.
A(0)=0 , A(X)=X

. Ac(A)2A

AxAx(A)= Ak (A)

If BoA, Ak(B)2 Ax(A).

Ax(A N B)S Ag(A) N Ag(B).

Ax(A U B)2 Ag(A) U Ag(B).

Proof: 2- Ax(A)2A , Since A K , Ke
(rg*,rg**)open sets X , by definition ( 3.1) we get
AC Ag(A)

3- AxAk(A)= Ax(A) , Ak (A)=N{G:A CG, G is Ke

egorwdE

[

(rg*,rg**)open <X }.

Ax[Axk (A= N [N{GA <G, G is Ke
(rg*rg**)open €X}]

=N{G:A €G, G is Ke (rg*,rg**)open <X }=
Ax(A)

4- 1f B2A, A¢(B)2 Ax(A), Ax (A)=N{G:A CG, G is
Ke (rg*,rg**)open =X }.

Since Ac S, then

N{G:D cG, G is Ke (rg*,rg**)open =X }< N{G:S
cG, G is Ke (rg*rg**)open <X }= Ax(B)=2
Ax(A).

5- Ax(A N B) S Ag(A) N Ag(B), since ANBC
A and ANBCEB

then Ag(A N B)S Ag(A) and Ag(A N B)S Ak(B).
Hence Ax(A N B)S Ag(A) N Ag(B).

6- Ax(A UB)2 Ax(A) U Ak(B).

Since ACAUB and BSAUB

=Ax(A) € Ax(A U B), Ax(A) € Ax(A U B).

Hence Ag(A UB)2 Ax(A) U Ax(B).

Remark 3.5:  The following example shows that the
converse section (5-6) of lemma (3.3) is not valid.
Example3.6: X={a,b,c, d e}

t={0 X {e}{a b}{d e}{a b, e}{c,d e}{a,b,c
,d}.{a ,b ,d ,e}}, Pro(x)={@ ,X ,p(x)}} .U={a, b, c, d
e}

(rg*,rg**)open sets={@,X,{a},{ b}.{c}{a, d}{{b
,d}.{b, c}.{c ,d}{a.c.d}.{b c.d}}.

A={b}, B={a ,c .d}, Ax(A)={b .d}, Ax(B)={a, c,
d}, Ak(A U B)=X , but Ax(A) U Ax(B)={a ,b c
,d}.then Ag(A U B) # Ax(A) U Ag(B).

A={c, d e}, B={a b c}, Ax(A)=X, Ax(B)=X,
Ax(A N B)={c}
Ak(A) N Ag(B)=X. , then Ax(A N B)# Ax(A) N
Ax(B)
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Lemma 3.7: (X, 1) be a topological space, Age:
L(x) —» L(x) is operator satisfy the conditions.

1- A(g**r) (¢)=® , A(g**r) (X):X

2-A (g (S)2S

3'A (g**1) A(g**r) (A):A(g**r) (A)

4-1f B2A, A (g (B)2 A gy (A)

5-A gy (ANB)S A gy (A) N A @y (B)

6-A (g**1) (A U B)Q A(g**r) (A) U A(g**r) (B)

Proof: ( 2- 3-4-5-6) The same steps as the previous
proof of lemma(3-3) .

Remark 3.8: The following example shows that the
converse section (5-6) of lemma (3.7) is not valid.
Example 3.9: Let X={a, b ,c, d ,e} and the
corresponding topology be

t={@ X{d}{c, e} {c.d.e}{a,b.c e}}

°={@ X {d}{a b} {a b, d}.{a b, c.,e}}

R-o(x)={ @ ,X,{d}{a b, c ,e}}, R-c(x)={X, 8,{a ,b, c
e }{d}}.

PreRo(X)={®,X,{a},{b}.{c}.{d}.{e} {a,b}.{a,c}.{ae
}{a.d}.{a,e}.{b,c}.{b.d} {b.e}{c.e}.{c.d},{d.e}.{ab
,c}.{a,b,d}{a,b,e}.{a,c.e}.{a,c,d},{b,c,d}{b,c.e}{c,
d,e},{b,d,e} {a,d,e}.{a,b,c,d},{ab,c.e}.{ac,d.e}{b,c,
d.e}.{ab,de}}
PreRc(x)={0,X,{a}.{b}.{c}.{d}{e}.{a.b}.{ac}.{ae
}{a.d}.{a.e}.{b,c}.{b,d} {b.e} {c.e}.{cd}{d.e}.{ab
,.c}{a,b,d} {a,b,e}.{ac.e}{ac,d}{b,c,d}{b,c.e}{c,
d,e}{b,d,e}{a,d,e}.{a,b,c,d}.{a,b,c.e}.{a.c,de}{b,c,
d.e}.{ab,d.e}}

g**r-open

set={@,X {a},{b}.{c}{e}.{ab} {ac}{ae}{ae}.{b,
ch{be}

{c.e}{ab,c}{ab,e}{a.c, e} {b,ce}}

1- A:{e}l B:{a C ,d}, AK(A):{e}l AK(B):{aI C, d},
Ax(A U B)= X ,but Ag(A) U Ax(B)={ {a, ¢, d, e},
then Ag(A U B) # Ag(A) U Ag(B).

2- A={c, d e}, B={a ,b ,d}, Ax(A)=X, Ax(B)=X,
Ax(A N B)={d}

Ax(A) N Ag(B)=X , then Ag(A N B)# Ax(A) N
Ax(B)

Theorem 3.10: A (g~.g~) (A)=A < A is a regular
generalized* [resp. regular generalized**] open set.
Proof: Let A be a regular generalized” open [resp.
regular generalized™ open] set.

Since A S A g« +<(A) and int(A) € U, U is regular
[resp. pre regular] closed set then

A rg(A) € A, therefore Argsg+(A)= A .
Conversely:  if Ageg«(A)= A . To prove A is a
regular generalized* [resp. regular generalized**]
open set

Since arbitrary intersection of regular generalized*
[resp. regular generalized**] open set is regular
generalized* [resp. regular generalized**] open set.
Then A is a regular generalized* [resp. regular
generalized**] open set.

Theorem 3.11:  Agy(A)= A « A is generalized
regular** open set.

Proof: Let A be a generalized regular** open set.
Since A € Ag~+(A), Rint(A) € U, U is Pre regular
closed set. then Ag(A) € A, , therefore Ag(A)=
A .
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Conversely: if Ag=(A)= A. To prove A is a
generalized regular** open set

Since arbitrary intersection of generalized regular**
open set is generalized regular** open set

Hence A is generalized regular** open set.

4. Conclusions

We introduced a new type of operators namely
(A regular generalized*, Aregular generalized**,
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