

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

On some generalized recent operators in topological Spaces

Siham I. Aziz¹, Nabila I. Aziz²

¹General Directorate of Kirkuk Province Education, Ministry of Education, Kirkuk, Iraq

²Department of Physics, College of Education -Tuzkhurmatu, Tikrit University, Tikrit, Iraq

https://doi.org/10.25130/tjps.v27i4.40

ARTICLE INFO.

Article history:

-Received: 21 / 2 / 2022 -Accepted: 14 / 6 / 2022 -Available online: / / 2022

Keywords: Λ regular generalized *, Λ regular generalized**, Λ generalized** regular

Corresponding Author:

Name: Siham I. Aziz

E-mail:

suham 70100@yahoo.com nabila.be@tu.edu.iq

Tel:

1. Introduction

In 1971 [1] defined semi-closure in topological space. In (1982) [2] studied the concept of closure operator. In (2003) [6] used the concepts of open sets, closure operator, and semi-closure to present and analyze several weak separation axioms. Later, [7] used the notions of pre-open sets and pre-closure operator to develop certain weak separation axioms. Some theorems of this nature theorem have been proved by some researchers: Let (X,T) be a T.S. (topological space) and A subset of X, is the intersection of all closed (resp. semi-closed, pre-closed, semi-pre-closed, b-closed) sets of X containing A is called the closure of A the closure of A [5](resp. semi-closure [1], pre-closure [3], semi-pre-closure [4], b-closure [5]) of A

In (2018) [8] introduced $\pi g^*\beta$ -closure in a topology space. In the year (2020) [9] and [10] introduced Preweakly generalized closed sets and presented Soft – interior and soft –closure in soft topology.

In this paper we present a new class of different operators we knew him on regular generalized open sets namely (Λ regular generalized*, Λ regular generalized**, Λ generalized** regular) (briefly, Λrg^* , Λrg^* , Λg **r, respectively) and study some of their properties with some important theorems.

2. Preliminaries

ABSTRACT

In this paper we introduce a new classes of operators namely (Λ regular generalized*, Λ regular generalized**, Λ generalized **regular) (briefly, Λ rg*, Λ rg**, Λ g**r, respectively) in topological spaces and study some of their properties with some important theorems.

This section of the manual lists some of the required definitions and theorems.

Definition 2.1[11]: A subset A of a space X is called regular generalized*- open [resp. regular generalized**- open] set (briefly rg*-o(x), rg**-o(x)) if $int(A) \subseteq U$, whenever $U \subseteq A$ and U is regular [resp. pre regular] closed set $\subseteq X$.

Definition 2. 2[11]: A subset A of a space X is called generalized** regular open set (briefly, g^{**r} -o(x)) if Rint (A) $\subseteq U$, whenever $U \subseteq A$ and U is preregular closed set $\subseteq X$.

Definition 2.4[12]: Let (X, τ) is a topological space as well as the operator Λ_{GR} $(F)= \cap \{U:F\subseteq U, U \text{ is generalized regular open set }\subseteq X\}$

3. On Some generalized recent operators in topological spaces

Definition 3.1: The new operators are listed below. Allow K to take the initiative = $[rg^*,rg^{**}]$ sets $\Lambda_K(A)=\cap\{U\colon A\subseteq U\ ,\ U\ \text{is}\ K\in (rg^*,rg^{**})\ \text{open}\subseteq X\}$

Example 3.2: $X=\{a,b,c,d,e\}$, $\tau=\{\emptyset,X,\{a,c,e\},\{a,b,c,e\},\{a,b\}\}$

 $\tau^c = \{\emptyset, X, \{d\}, \{b, d\}, \{c, d, e\}\}\$

 $R-o(x)=\{\emptyset,X\}, R-c(x)=\{X,\emptyset\}.$

PreR-

 $o(x) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{a,b\}, \{a,c\}, \{a,e\}, \{a,d\}, \{b,c\}, \{b,d\},$

TJPS

 $\label{eq:beta_def} $$\{b,e\},\{c,e\},\{c,d\},\{a,b,c\},\{a,b,e\},\{a,c,e\},\{a,c,d\},\{b,c,d\},\{b,c,e\},\{c,d,e\}$$}$

,{b,d,e},{a,d,e},{a,b,c,d},{a,b,c,e},{a,c,d,e},{b,c,d,e},{a,b,d,e}}

$$\begin{split} & \operatorname{PreRc}(x) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{a,b\}, \{a,c\}, \{a,e\}, \{a,d\}, \{b,c\}, \{b,d\}, \{b,e\}, \{c,e\}, \{c,d\}, \{d,e\}, \{a,b,d\}, \{a,b,e\}, \{a,c,e\}, \{a,c,d\}, \{b,c,e\}, \{c,d,e\}, \{b,d,e\}, \{a,d,e\}, \{a,b,c,d\}, \{a,b,c,e\}, \{a,c,d,e\}, \{b,c,d,e\}, \{a,b,d,e\}, \{a,b$$

 $A=\{a,b,c\}, \Lambda K(A)=X,$

 $K=(rg^*, rg^{**})$ -open $sets=\{\emptyset, X\{a\}, \{d\}, \{e\}, \{b, c\}, \{b, d\}, \{c, e\}, \{d, e\},$

{a, c,d},{b,c,d},{a,d,e},{c,d,e}, {b,c,d,e}}

Lemma 3.3: (X, τ) be a topological space, $\Lambda_{\underline{K}}$: $q(x) \rightarrow q(x)$ is operator which satisfies the properties.

1. $\Lambda_K(\emptyset) = \emptyset$, $\Lambda_K(X) = X$

2. $\Lambda_K(A)\supseteq A$

3. $\Lambda_K \Lambda_K(A) = \Lambda_K(A)$

4. If $B \supseteq A$, $\Lambda_K(B) \supseteq \Lambda_K(A)$.

5. $\Lambda_K(A \cap B) \subseteq \Lambda_K(A) \cap \Lambda_K(B)$.

6. $\Lambda_K(A \cup B) \supseteq \Lambda_K(A) \cup \Lambda_K(B)$.

Proof: 2- $\Lambda_K(A) \supseteq A$, Since $A \subseteq K$, $K \in (rg^*,rg^{**})$ open sets $\subseteq X$, by definition (3.1) we get $A \subseteq \Lambda_K(A)$

3- $\Lambda_K \Lambda_K(A)$ = $\Lambda_K(A)$, $\Lambda_K(A)$ =∩{G:A ⊆G, G is K∈ (rg*,rg**)open ⊆X }.

 $\Lambda_K[\Lambda_K (A)] = \bigcap [\bigcap \{G: A \subseteq G, G \text{ is } K \in (rg^*, rg^{**}) \text{ open } \subseteq X \}]$

 $= \cap \{G: A \subseteq G, G \text{ is } K \in (rg^*, rg^{**}) \text{ open } \subseteq X \} = \Lambda_K(A)$

4- If $B\supseteq A$, $\Lambda_K(B)\supseteq \Lambda_K(A)$, $\Lambda_K(A)=\cap \{G: A\subseteq G, G \text{ is } K\in (rg^*,rg^{**})\text{open }\subseteq X \}$.

Since $A \subseteq S$, then

 $\begin{array}{l} \cap \{G : D \subseteq G, \ G \ \ is \ K \in (rg^*, rg^{**}) open \subseteq X \ \} \subseteq \cap \{G : S \\ \subseteq G, \ G \ \ is \ K \in (rg^*, rg^{**}) open \ \subseteq X \ \} \Longrightarrow \ \Lambda_K(B) \supseteq \\ \Lambda_K(A). \end{array}$

5- $\Lambda_K(A \cap B) \subseteq \Lambda_K(A) \cap \Lambda_K(B)$, since $A \cap B \subseteq A$ and $A \cap B \subseteq B$

then $\Lambda_K(A \cap B) \subseteq \Lambda_K(A)$ and $\Lambda_K(A \cap B) \subseteq \Lambda_K(B)$. Hence $\Lambda_K(A \cap B) \subseteq \Lambda_K(A) \cap \Lambda_K(B)$.

6- $\Lambda_K(A \cup B) \supseteq \Lambda_K(A) \cup \Lambda_K(B)$.

Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$

 $\Rightarrow \Lambda_{K}(A) \subseteq \Lambda_{K}(A \cup B), \Lambda_{K}(A) \subseteq \Lambda_{K}(A \cup B)$.

Hence $\Lambda_{\kappa}(A \cup B) \supseteq \Lambda_{\kappa}(A) \cup \Lambda_{\kappa}(B)$.

Remark 3.5: The following example shows that the converse section (5-6) of lemma (3.3) is not valid.

Example 3.6: $X = \{a, b, c, d, e\}$

 $\tau = \{\emptyset \ , X, \{e\}, \{a\ ,b\}, \{d\ ,e\}, \{a\ ,b,\ e\}, \{c,\ d\ ,e\}, \{a\ ,b\ ,c \\ ,d\}, \{a\ ,b\ ,d\ ,e\}\}, \ Pro(x) = \{\emptyset \ , X\ ,p(x)\}\} \ ,U = \{a,\ b,\ c,\ d\ ,e\}$

(rg*,rg**) open $sets=\{\emptyset,X,\{a\},\{b\},\{c\},\{a,d\},\{b,c\},\{c,d\},\{a,c,d\},\{b,c,d\}\}.$

 $\begin{array}{ll} i. & A {=} \{b\}, \ B {=} \{a \ , c \ , d\}, \ \Lambda_K(A) {=} \{b \ , d\}, \ \Lambda_K(B) {=} \{a \ , c, d\}, \ \Lambda_K(A \ \cup \ B) {=} X \ , \ but \ \Lambda_K(A) \ \cup \ \Lambda_K(B) {=} \{a \ , b \ , c, d\}. \\ \text{then } \Lambda_K(A \cup B) \neq \Lambda_K(A) \cup \Lambda_K(B). \end{array}$

ii. $A=\{c, d, e\}, B=\{a, b, c\}, \Lambda_K(A)=X, \Lambda_K(B)=X, \Lambda_K(A \cap B)=\{c\}$

 $\Lambda_K(A)\cap \Lambda_K(B){=}X.$, then $\Lambda_K(A\cap B){\neq} \Lambda_K(A)\cap \Lambda_K(B)$

Lemma 3.7: (X, τ) be a topological space, $\Lambda_{g^{**}r}$: $L(x) \to L(x)$ is operator satisfy the conditions.

1- $\Lambda_{(g^{**}r)}(\emptyset)=\emptyset$, $\Lambda_{(g^{**}r)}(x)=x$

 $2-\Lambda_{(g^{**}r)}(S)\supseteq S$

 $3-\Lambda_{(g^{**}r)} \Lambda_{(g^{**}r)} (A) = \Lambda_{(g^{**}r)} (A)$

4-If $B\supseteq A$, $\Lambda_{(g^{**r})}(B)\supseteq \Lambda_{(g^{**r})}(A)$

 $5\text{-}\Lambda_{(g^{**}r)}\ (A\cap B)\subseteq\ \Lambda_{(g^{**}r)}\ (A)\cap\Lambda_{(g^{**}r)}\ (B)$

 $6-\Lambda_{(g^{**}r)}$ (A U B) $\supseteq \Lambda_{(g^{**}r)}$ (A) U $\Lambda_{(g^{**}r)}$ (B).

Proof: (2-3-4-5-6) The same steps as the previous proof of lemma(3-3).

Remark 3.8: The following example shows that the converse section (5-6) of lemma (3.7) is not valid.

Example 3.9: Let $X=\{a, b, c, d, e\}$ and the corresponding topology be

 $\tau = \{\emptyset, X, \{d\}, \{c, e\}, \{c, d, e\}, \{a, b, c, e\}\}\$

 $\tau^c = \{\emptyset, X, \{d\}, \{a,b\}, \{a,b,d\}, \{a,b,c,e\}\}\$

R-o(x)={ \emptyset ,X,{d},{a,b,c,e}}, R-c(x)={X, \emptyset ,{a,b,c,e},{d}},.

PreRo(x)={Ø,X,{a},{b},{c},{d},{e},{a,b},{a,c},{a,e},{a,d},{a,e},{b,c},{b,d},{b,e},{c,e},{c,d},{d,e},{a,b,c},{a,b,d},{a,b,e},{a,c,e},{a,c,d},{b,c,d},{b,c,e},{c,d,e},{b,d,e},{a,d,e},{a,b,c,e},{a,c,d,e},{b,c,d},{b,c,d},{b,c,d},{b,c,d},{b,c,d},{b,c,d},{b,c,d},{b,c,d},{d,e},{a,b,d,e}}}

$$\label{eq:preconstruction} \begin{split} & \operatorname{PreRc}(x) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{a,b\}, \{a,c\}, \{a,e\}, \{b,c\}, \{b,c\}, \{b,e\}, \{c,e\}, \{c,d\}, \{d,e\}, \{a,b,c\}, \{a,b,d\}, \{a,b,e\}, \{a,c,e\}, \{a,c,d\}, \{b,c,d\}, \{b,c,e\}, \{c,d,e\}, \{a,b,d,e\}, \{a,b,c,e\}, \{a,c,d,e\}, \{b,c,d,e\}, \{a,b,d,e\}\} \end{split}$$

g**r-open

 $set=\{\emptyset,X,\{a\},\{b\},\{c\},\{e\},\{a,b\},\{a,c\},\{a,e\},\{a,e\},\{b,c\},\{b,e\}\}$

 $\{c,e\},\{a,b,c\},\{a,b,e\},\{a,c,e\},\{b,c,e\}\}.$

 $\begin{array}{l} 1\text{- }A = \!\{e\}, \, B = \!\{a \,, c \,, d\}, \, \Lambda_K(A) = \!\{e\}, \, \Lambda_K(B) = \!\{a, \, c, \, d\}, \\ \Lambda_K(A \, \cup \, B) = \, X \, , but \, \Lambda_K(A) \, \cup \, \Lambda_K(B) = \!\{\, , \!\{a, \, c, \, d, \, e\} \,, \\ then \, \Lambda_K(A \, \cup \, B) \neq \Lambda_K(A) \, \cup \, \Lambda_K(B). \end{array}$

2- A={c, d,e}, B={a,b,d}, $\Lambda_K(A)=X$, $\Lambda_K(B)=X$, $\Lambda_K(A \cap B)=\{d\}$

 $\Lambda_K(A)\cap \Lambda_K(B)\!\!=\!\! X$, then $\Lambda_K(A\cap B)\!\neq \Lambda_K(A)\cap \Lambda_K(B)$

Theorem 3.10: Λ ($_{rg^*, rg^{**}}$) (A)=A \leftrightarrow A is a regular generalized* [resp. regular generalized**] open set.

Proof: Let A be a regular generalized* open [resp. regular generalized** open] set.

Since $A \subseteq \Lambda_{rg^*,rg^{**}}(A)$ and $int(A) \subseteq U$, U is regular [resp. pre regular] closed set then

 $\Lambda_{\,rg^*\,,rg^{**}}\!(A)\subseteq\ A$, therefore $\,\Lambda_{rg^*,rg^{**}}\!(A)\!\!=A$.

Conversely: if $\Lambda_{rg^*,rg^{**}}(A)=A$. To prove A is a regular generalized* [resp. regular generalized**] open set

Since arbitrary intersection of regular generalized* [resp. regular generalized**] open set is regular generalized* [resp. regular generalized**] open set. Then A is a regular generalized* [resp. regular generalized**] open set.

Theorem 3.11: $\Lambda_{(g^{**r})}(A) = A \leftrightarrow A$ is generalized regular** open set.

Proof: Let A be a generalized regular** open set. Since $A \subseteq \Lambda_{gr^{**}}(A)$, Rint(A) $\subseteq U$, U is Pre regular closed set. then $\Lambda_{gr^{**}}(A) \subseteq A$, therefore $\Lambda_{gr^{**}}(A) = A$.

Conversely: if $\Lambda_{gr^{**}}(A) = A$. To prove A is a generalized regular** open set

Since arbitrary intersection of generalized regular** open set is generalized regular** open set Hence A is generalized regular** open set.

4. Conclusions

We introduced a new type of operators namely $(\Lambda \text{ regular generalized*}, \Lambda \text{ regular generalized**},$

References

- [1] Hildebrand, S.G. (1971). Semi-closure. *Texas J. Sci.*, **22**:99-112,
- [2] Dunham ,W. (1982). A new closure operator for non-T4 topologies. *Kyungpook Math. J.*, **22**:55-60,
- [3] Mashhour, A. S., Hasanein ,I. A. and El-Deeb, S. N. (1983). Continuous and open mappings. *Acta Math. Hungar*, **41**: 213-218.
- [4] Andrijevic, D. (1986) .Semi-preopen sets. *Mat. Vesnik*, **38**: 24-32.
- [5] Andrijevic, D. (1996). On b-open sets. *Mat. Vesnik*, **48**: 56-64.
- [6] Caldas, M., Georgiou D. N., and Jafari, S. (2003). Characterizations of low separation axioms and closure operator. *Bol. Soc. Paran. Mat*, **2112(3)**: 1-14.
- [7] Caldas, M., Fukutake, T., jafari, S. and Noiri, T. (2005). Some applications of -preopen sets in topological spaces. *Bulletin of the Institute of Mathematics Academia Sinica*, 33(3).

 Λ generalized **regular) (briefly, Λ rg *, Λ rg **, Λ g **r, respectively) in topological spaces and study some of their properties with some important theorems. I n the next study we can generalized to the Nano topological space and micro topological space. As well as the definition of operator Λ can generalized on (α , β and β) open sets.

- [8] Devika, A. and Vani, R. (2018). On $\pi g^*\beta$ -Closed Sets in Topological Spaces. *J Appl Computat Math*, 7:3,DOI: 10.4172/2168-9679.1000413.
- [9] Bhardwaj, N. and Mir, A. (2020). Pre weakly generalized closed sets in topological spaces, Journal of Physics: Conference Series , IOP Publishing,1531 (2020) 012082,doi:10.1088/1742-6596/1531/1/012082
- [10] Savita R., Ridam G. and Kusum D. (2020). On soft ω -interior and soft ω -closure in soft topological spaces. *Journal of Interdisciplinary Mathematics*, **6.(23)**,
- [11] https://doi.org/10.1080/09720502.2020.1815399 [12] Aziz, N. I. and Jasim, T. H. (2014). On generalized minimal open sets. A Thesis Submitted to the Council of the College of Education for Pure Science, , In Partial Fulfillment of the Requirement for the Degree of Master of Science in Mathematics. Tikrit University, Tikrit, Iraq: 92 pp.
- [13] Bhattacharya ,S. (2011). On generalized regular closed sets. *Contemp. Math. Sciences*, **6(3)**: 145-152.

على بعض العوامل المعممة الحديثة في الفضاءات التبولوجية

سهام ابراهیم عزیز 1 ، نبیلهٔ ابراهیم عزیز 2

المديرية العامة لتربية محافظة كركوك ، وزارة التربية والتعليم ، كركوك ، العراق
قسم الفيزياء ، كلية التربية ، طوزخورماتو ، جامعة تكريت ، تكريت ، العراق

الملخص

في هذا البحث نقدم فئات جديدة لبعض العوامل اسميناها (Λ regular generalized, Λ regular generalized, Λ regular generalized, Λ regular regular). (باختصار ، * Λ rg ** r ، Λ rg ** r ، Λ rg ** Λ rg ** وبعض النظريات .