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Abstract 
This paper presents a three-species food chain system, which consists of intermediate predator population that 

depends only on prey population, and top predator population that depends only on intermediate predator 

population. We study this model when the intermediate predator exposed to the risk of harvest. 

We studied the bounded solutions and equilibrium points with its conditions. Also the stability for each 

equilibrium points was studied. We determine the invariant region, in this region all population are survive and 

continuous harvesting. At last, we describe some results in numerical simulation. 
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1. Introduction 
The study of interaction between populations of 

various species is an active research area in 

theoretical ecology. One of the earliest and important 

of such studies is the interactions between predators 

and prey. The model describing such interactions was 

first investigated by Lotka and later independently by 

Volterra. The model, which came to be known as the 

Lotka-Volterra system of equations, were further 

developed and extended by many authors.  

Predator–prey models are of great significance in 

mathematics and biology. Predator–prey models have 

attracted a lot of attention in recent years because 

they represent mathematical equations that deal with 

important ecological problems such as the spread of 

diseases and irregularity in harvesting that can lead to 

the extinction of species. Researchers have 

investigated the various forms of predator–prey 

models, Gakkhar and Naji [6] , Naji and Balasim [12] 

, and Upadhyay and Naji [13] studied the dynamics of 

several forms of predator–prey models for different 

functional responses, Wuhaib and Hasan [14]  and 

Chauvet, Paullet et al. [3]  studied the dynamics of 

food chains and fixed surfaces.  Xiao, Li et al. [15]  

studied the dynamics of a predator–prey model with 

an infected prey living in a habitat accessible to the 

predator. Kumar Kar [11]  analyzed the effects of 

constant and random refuges with harvests to show 

the effect of refuges on stability. Butler, Hsu et al. 

[2], Hwang [10] and Hesaaraki and Moghadas [8] 

studied the local stability, global stability and limit 

cycle of predator–prey models. Freedman and 

Waltman [5]  developed hypotheses on the 

persistence. This idea was further explored by others 

Heathcoteetal [9], Haque et al [7] Another important 

extension was the incorporation of harvesting in the 

model as carried out by Duby [4], and Xiao [16].  

Most predator prey models with harvesting consider 

either constant or linear harvesting functions and 

assumed that harvesting starts at. Jonathan Bohn and 

Jorge Rebaza [1] study the continuous threshold prey 

harvesting dependent on size of prey in predator prey 

model. Classically, the harvesting function is defined 

as  

 0 if ,
( )

if .

y T
H y

h y T




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




    (1) 

Where y is the prey or predator that will be harvested, 

T is the threshold while h is the rate of harvesting. In 

this paper, we use two continuous threshold policy 

(CTP) harvesting functions on the prey Bohn [1]. One 

of them has the form  
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  (2) 

We study the continuous threshold intermediate 

predator in food chain model. We assume the 

intermediate predator will only interact with the prey 

and the top predator will only interact with is on the 

intermediate predator. The intermediate predator 

exposed to the risk of harvest. 

2 .The model 
We now introduce several variations of the model. 

2.1The model without harvesting 

The model can be written as 

  1

2 1

2

1

1

1
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y z
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    (3) 

Where ,x y and z are prey, intermediate predator 

and top predator respectively,
1 2
,k k the contact 

between prey and intermediate predator, 
1 2
,b b the 

depletion and  the death rate of top predator. The 

term (1 )y z y  is the Holling functional response 

type II. 

Theorem 1. If 
2

b  then ( ) 0lim z t as t    

Proof . Suppose that  
2

b   then 0
d z

d t
 , therefore, 

( )lim z t exist and non negative. 

To show that ( ) 0lim z t as t    suppose there 

exist a positive constant q such that
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.( )lim z t q as t    

 
We take a small positive value  such that 

( )q z t q      
as 

0
t t  and take the positive 

constant m a x
y  such that 

m a x
( )y t y when 

0
t t  . 

From the third equation of system (3) we get  

                 
2
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yd z
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Since 
0

( ) w henz s p t t    , we have 
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 2 m a x

0 0
m a x

( ) ( ) e x p ( )( ) 0
1

b y
z t z t t t as t

y

  
     

  
This is a contradiction with the hypothesis, thus  

( ) 0lim z t as t      

Theorem 2 The system (3) cannot have periodic 

orbit. 

Proof.  We use Dulac's Criterion to show the 

nonexistence of periodic orbit.  

We choose the multiplier 1
( , )g x y

x y


and consider 

the positive quadrant of the x y -plane. 

Let 
11

( , ) (1 )g x y x x k x y    and 
22

( , )g x y k x y  

Consider the divergence 
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We get 
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1
( , ) ( ) ( )

x
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1
( , )x y

y
  

 
Which is clearly sign-definite in the region 

considered .  
The model system (3) has the following equilibriums 

points: 

 The trivial equilibrium point  0
 0 , 0 , 0  p

 always 

exists. 

 The equilibrium point  1
1  , 0 , 0  p

exists on the 

boundary of the first octant. 
 

 The nontrivial equilibrium point 
2 2 2 2

( , , )p x y z , 

where  

   2 1 2
1x k y   

2

2

y
b




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

  ,  2 2 2 2

2

1

b k x y
z

b 
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 Exists under the condition  2
  1 x    

The variational matrix of system (3) is given by 

 

   
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From the linear stability analysis about the above 

equilibrium points, we have the following: 

  The eigenvalues of 
0

p  
 

are 
1 2

01 , 0   and

3
0    , so it is an unstable manifold along x -

direction while a stable manifold along z -direction. 

Hence
0

p  a saddle point.  

  The eigenvalues of 
1

p  
are 

1 2 2
0  , 01 k     

and
3

0 ,     so it is locally asymptotically stable. 

  Next, for the positive equilibrium 
2

p , the 

variational matrix is  
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2
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1

p

b
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y

z
b

y
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The characteristic equation of this point is 
3 2

0A B C       

Where  
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And    

 

1 2 2

2 2
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1

b x z
C

y


 
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By Routh-Hurwitz criterion this point is stable is 

2 2 2
0A B C 

 2.2 The model with harvesting 

We use the continuous threshold policy ( )C T P  

harvesting function on the susceptible prey, which 

has the form in equation (2). Here T is the threshold 

value and h the rate of harvest. When y T the 

harvesting starts and the model becomes 
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       (4) 

2.2.1 Bound on the Solution 

Theorem 3. The solution to system of equations (4) 

is bounded.  

Proof.  Same proof in theorem 1.   

2.2.2. Equilibrium and Stability 

     The model in system (4) has the following 

equilibriums points: 

 The trivial equilibrium point
3

(0 , 0 , 0 )P  always 

exists. 

 The equilibrium point
4

(1, 0 , 0 )P  exists on the 

boundary of the first octant. 
 

 The nontrivial equilibrium point 
5 5 5 5

( , , )P x y z , 

where  
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 Exists under the conditions 
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 1 k y  
2

b  , and 

5 52
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Accordingly, the linear stability analysis about the 

above equilibrium points gives the following: 

  The eigenvalues of 
3
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, hence
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saddle point. 

  The eigenvalues of 
4

P
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1
1    

2 2
, 0k  

and 

3
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hence 
4

P  is also a saddle point.  

  Next,
 the characteristic equation near 

5
P  is 
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By Routh-Hurwitz criterion this point is stable is 

5 5 5
0A B C 

 2.3. Piecewise Linear Threshold Policy Harvesting 

In this section we take a piecewise linear threshold 

policy harvesting 
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(5) 

We shall study the effect of any small changes in the 

qualitative definition of this function. 

The model in this case becomes 
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We do not consider the case when 
1

y T
 
because we 

study that in (2.1) . 

2.3.1. Equilibrium and Stability when 
1 2

T y T 
 

Theorem 3.1.1 The solution of the system (6) is 

bounded  

Proof. Same proof in theorem 1. 

The model system (6) has the following equilibrium 

points: 

 The trivial equilibrium point 
6

(0 , 0 , 0 )P always 

exists. 

 The equilibrium point  
7

(1, 0 , 0 )P   exists on the 

boundary of the first octant. 
 

 The nontrivial equilibrium point  8 8 8 8
, ,P x y z , 

where  
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Exists under the conditions 

 2 8 81 28
and1  ,k y k x yb H y   .

 
The linear stability analysis about the above 

equilibrium points gives the following: 

  The eigenvalues of 
6

P  are 
1 2

2 1

1,
h

T T
   


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3
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, therefore 

6
P is saddle point.  

  The eigenvalues of 
7

P are

1 2 2

2 1

1 0  , 0
h

k
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

 and
3

0 ,     hence 

7
P  is stable  point  if 

2

2 1

h
k

T T




.  

  Next, for the positive equilibrium
8

P , the 

variational matrix is  
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The characteristic equation at 
8

p   is 
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Where  
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By Routh-Hurwitz criterion this point is stable is 

8 8 8
0A B C 

 
2.3.2 Equilibrium and Stability when 

2
y T  

     When the prey size is greater than the threshold 

value
2

T , this means that ( )H y h where h  is a 

constant. In this case the model becomes  

1

2 1

2

(1 )

1

( )
1

x x x k x y

y z
y k x y b h

y

y
z z b

y





   




   





   
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(7) 

In the same way we can prove the solution of system 

(7) is bounded and cannot have periodic orbit. 

The model system (7) has the following equilibriums 

points: 

  The trivial equilibrium point 
9

(0 , 0 , 0 )P  always 

exists. 

  The equilibrium point 
1 0

(1, 0 , 0 )P  exist on the 

boundary of the first octant. 

   The nontrivial equilibrium point 
1 1 1 1 1 1 1 1

( , , )P x y z . 

     Where  

    2

1 1 1 11 1 2 1 1 1 11 1 1
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k y y z h
b
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b
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
 
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

.  
 

 Exists under the conditions 
2

b    , 
1 1 1

1 k y and 

2 1 1 1 1
k x y h  

The linear stability analysis about the above 

equilibrium points gives the following: 

  The eigenvalues of 
9

P  are 
1 2

01 , 0   and
 

3
0    , hence

9
P  is an unstable manifold along 

x -direction, while stable manifold along z -

direction, Therefore 
9

P is saddle point.  

  The eigenvalues of 
1 0

P are

1 2 2 3
1 , a n dk        hence 

1 3
P  is also a 

saddle point.  

   Next, the characteristic equation at 
 1 1

p  is 

3 2
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Where 
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1
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1
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y

b
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
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2
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z
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y
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By Routh-Hurwitz criterion this point is stable is 

1 1 1 1 1 1
0A B C 

 
4. Invariant Region 
We have studied the existence of equilibriums and 

determine the necessary and sufficient conditions for 

them; we also prove the bounds on the solution and 

show that these models cannot have any periodic 

solution in the interior of the positive quadrant of the 

xy -plane. 

Next we would like to find the invariant region for 

these models.  

By comparing the equilibrium points and their 

properties for both models in the cases where all 

populations can survive, we show the size of prey 

population is always is 
1 2

1 k y  also size of 

intermediate predator population is always

2

y
b








, 

and the corresponding z values satisfy 

                                   
2 5 8 1 1

z z z z    

When                          

   2 5 5 2 8 8
H y Hk k yx y x y   

However                     
2 5 8 1 1

z z z z    

When                          

   2 8 8 2 5 5
H y Hk k yx y x y   

This difference depends on the distance between the 

size of prey population and the threshold, and 

whether the size of the top predator population 

increasing or decreasing depends on the harvest of 

prey. If we fixed all parameters, the size of 

intermediate predator and prey and are fixed. 

Therefore we can say the invariant region to these 

models is the intersection of the four cones where 

these cones are   

2 2 2
. ( , , )i x y z  

5 5 5
. ( , , )i i x y z  

8 8 8
. ( , , )i i i x y z  

1 1 1 1 1 1
. ( , , )iv x y z  

Hence the invariant region is  11 11 11
, ,x y z .  

5. Numerical Simulation 
In this section, we try to explain some of the findings 

of our study. After many numerical attempts and to 

guarantee all populations survive, we fixed the 

parameters as 

1 2 1 2
0 .3 3 9 1, 0 .1 9 4 1, 0 .3 4 7 5 , 0 .1 0 3 1, 0 .0 4 8b b k k      . 

We found that the lowest value of the harvest is a 

good way to maintain the coexistence of all 

populations together and continued harvesting system 

tends to stability. 

We take parameter of harvesting is 0.000001, 0.0209 

and 0.364 and show in first and second values of 

harvesting all populations survive as in figures (1-2) 

and  
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in the third case we found that over-harvesting leads 

to extinction of intermediate predator and thus the 

extinction of top predator, as in figure (3). 

And as a natural result the best policy for the harvest 

is controlled the harvest to ensure the survival of all 

populations and the sustainability of the harvest.  

Also note that the harvest little means that the 

interactions between populations less than in the case 

of harvesting the biggest, and perhaps by the fact that 

the little harvest means enough food to all predator 

then no take long time to find the food, while when 

we increase harvest that’s lead decreasing food then 

the predator need long time to find the food. This 

means the oscillations is small in first case figure (1) 

and big oscillations in second case figure (2). 

 At increased harvest the system tends to destabilize 

as in Figure (4), this proved to the role of harvesting 

in stability of this system.  
  

 
Figure 1. Oscillation of prey, intermediate and top predator for harvesting =0.000001 

 

 
Figure 2. Oscillation of prey, intermediate and top predator for  harvesting=0.0209 

 

 
Figure 3. Oscillation of prey, intermediate and top predator for  harvesting=0.364 

 

 
Figure 4. The trajectories of system is stability for parameter of harvesting 0.000001, and 0.029. 

 

6. Discussion  
We have studied two models with different 

continuous threshold harvesting functions. In the first 

model we consider a smooth harvesting behavior 

started when the size of intermediate predator reached 

the threshold, and in the second model we consider a 
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piecewise linear harvesting behavior after the size of 

intermediate predator reached the first threshold and 

continuous after that. 

We show that the equilibriums and the dynamics of 

these are same except little different. 
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 الملخص
تغذيتو عمى الفريسو بينما يعتمد وسطي يعتمد في مفترس  فريسو وتقدم ىذه الورقة نظام السمسمة الغذائية ثلاثة أنواع، والتي تتألف من عدد السكان 

  المفترس عمى المترس الوسطي.
ستقرار لكل الا. كما تمت دراسة االتوازن مع شروطي ونقاطالمقيدة الحمول مفترس المتوسط يتعرض لخطر الحصاد, نحن نرس النموذج ال في ىذا

مع استمرار الحصاد وضمان نضمن عدم انقراض اي من المججتمعات الثلاثة التوازن. عمينا أن نحدد منطقة ثابتة، في ىذه المنطقة  من نقاط نقطة
 م تحولو الى وباء.دالسيطرة عمى المرض وع
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