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Abstract

This paper presents a three-species food chain system, which consists of intermediate predator population that
depends only on prey population, and top predator population that depends only on intermediate predator
population. We study this model when the intermediate predator exposed to the risk of harvest.

We studied the bounded solutions and equilibrium points with its conditions. Also the stability for each
equilibrium points was studied. We determine the invariant region, in this region all population are survive and
continuous harvesting. At last, we describe some results in numerical simulation.

Key words: Food chain, equilibrium point, harvesting, invariant region.

1. Introduction

The study of interaction between populations of
various species is an active research area in
theoretical ecology. One of the earliest and important
of such studies is the interactions between predators
and prey. The model describing such interactions was
first investigated by Lotka and later independently by
Volterra. The model, which came to be known as the
Lotka-Volterra system of equations, were further
developed and extended by many authors.
Predator—prey models are of great significance in
mathematics and biology. Predator—prey models have
attracted a lot of attention in recent years because
they represent mathematical equations that deal with
important ecological problems such as the spread of
diseases and irregularity in harvesting that can lead to
the extinction of species. Researchers have
investigated the various forms of predator—prey
models, Gakkhar and Naji [6] , Naji and Balasim [12]
, and Upadhyay and Naji [13] studied the dynamics of
several forms of predator-prey models for different
functional responses, Wuhaib and Hasan [14] and
Chauvet, Paullet et al. [3] studied the dynamics of
food chains and fixed surfaces. Xiao, Li et al. [15]
studied the dynamics of a predator—prey model with
an infected prey living in a habitat accessible to the
predator. Kumar Kar [11] analyzed the effects of
constant and random refuges with harvests to show
the effect of refuges on stability. Butler, Hsu et al.
[2], Hwang [10] and Hesaaraki and Moghadas [8]
studied the local stability, global stability and limit
cycle of predator—prey models. Freedman and
Waltman [5] developed hypotheses on the
persistence. This idea was further explored by others
Heathcoteetal [9], Haque et al [7] Another important
extension was the incorporation of harvesting in the
model as carried out by Duby [4], and Xiao [16].
Most predator prey models with harvesting consider
either constant or linear harvesting functions and
assumed that harvesting starts at. Jonathan Bohn and
Jorge Rebaza [1] study the continuous threshold prey
harvesting dependent on size of prey in predator prey
model. Classically, the harvesting function is defined
as

96

jOif y <T, Q)
hif y =T,

Where y is the prey or predator that will be harvested,
T is the threshold while h is the rate of harvesting. In
this paper, we use two continuous threshold policy
(CTP) harvesting functions on the prey Bohn [1]. One
of them has the form

H(y)=

Jfo if vy <T , (2)
HOD=hty =T) ¢y o7
Lh+y—T

We study the continuous threshold intermediate
predator in food chain model. We assume the
intermediate predator will only interact with the prey
and the top predator will only interact with is on the
intermediate predator. The intermediate predator
exposed to the risk of harvest.

2 . The model

We now introduce several variations of the model.
2.1The model without harvesting

The model can be written as

}x’:x(l—x)—klxy (3)
e 2

‘y KXy 1+y

‘{Z _b21+y—yz

Where x ,y and z are prey, intermediate predator

k , the contact

and top predator respectively, k,, k,
between prey and intermediate predator, b , b, the
depletion and y the death rate of top predator. The
termyz /(1+y) is the Holling functional response

type Il
Theorem 1. If y > b, then |im z (t)=0ast -

Proof . Suppose that b, <, then dz _ ., therefore,
dt

lim z (t) exist and non negative.
To show that Iim z (t) = 0 as t — o suppose there
exist a positive constant q such that
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limz((t)=qast > o.

We take a small positive value & such that
g-e<z(t)<q+e a t>t, and take the positive
constant y ,, suchthat y ¢)<y _ whent >t .
From the third equation of system (3) we get

di:—yz +b, yz

dt 1+y
ie.

ldz y

z dt 1+y
Then

by(s) )

z(t)=1z(t,)ex 2 —y |ds
t)y=1z(t,) p(‘{thy(s) 7J )

Since ; (s)>p - when't >, We have

by (s)

)
t)< t d
Z()<Z(°)9Xp(t{tl+y(s) 7 [d9)

(bo=7)Y max =7
z(t)<z(tyexp(-———— )t -t))>0ast >

1+ y max
This is a contradiction with the hypothesis, thus
limz()=0ast—»> o U
Theorem 2 The system (3) cannot have periodic
orbit.
Proof. ~We use Dulac's Criterion to show the
nonexistence of periodic orbit.
We choose the multiplier 1 and consider
xy
the positive quadrant of the Xy -plane.

g(x.y)=

Let g (x,y)=x@-x)-kxy ad g (x,y)=k,xy
Consider the divergence
_9(9,9) N 0(9,9)

AGGY) ox oy
Weget (i yy= 2 i)+ 2k )
ox y oy
i.e.
AGCy) ==
Which is clearly sign-definite in the region

considered . -

The model system (3) has the following equilibriums
points:

e The trivial equilibrium point p,(0.0.0) always

exists.

e The equilibrium point exists on the

p,(1,0,0)
boundary of the first octant.

» The nontrivial equilibrium point p,(x,.,y,.z,),
where

— bzk 2X 2 y 2

xzzl—klyz,y __7 vz
2
b,y

b,-»
Exists under the condition 1>x,)"

2

The variational matrix of system (3) is given by
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r 1
\ \
\ \
[1-2x —k,y -k ,x 0 |
\ \
I=1 K,y kKX —b,——— b |
| T
\ z y |
\ 0 b, 2 b2(1+y)77\
| (1+y) |

From the linear stability analysis about the above
equilibrium points, we have the following:
o The eigenvalues of , = are 2,=1>0,4,=0 and

4.=—y <0, SO itis an unstable manifold along x -
3

direction while a stable manifold along z -direction.
Hence p ~a saddle point.

e The eigenvalues of p, a7 - 120,24, -k,>0
and 4,=-y<0, SO it is locally asymptotically stable.
e Next, for the positive equilibrium p, the
variational matrix is

[ il
| |
I -X, -k x, 0 I
| 7 b |
2 e
Jp2=|k2y2 k,x,-b, —— -1
l (1+y,) b, :
| z, |
| 0 b, 2 0
| (1+vy,) |
The characteristic equation of this point is

A+AL +BA+C =0
Where

A,=(1-k,)x,+b, z

2

A2>Oif1>k2

(1+y)
( |
ylzz
B,=-x, k,x,-b, A+ —+k k,x,y,
L (1+y2)J (1+y,)
And :bl}/x222>0
2
(1+y2)

By Routh-Hurwitz criterion this point is stable is
A,B,-C,>0

2.2 The model with harvesting

We use the continuous threshold policy (cTp)
harvesting function on the susceptible prey, which
has the form in equation (2). Here T is the threshold
value and h the rate of harvest. When y > the

harvesting starts and the model becomes
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[
lx :x(l—x)—klxy (4)
yz
"=k -b -
le XY by e H ()
| yz
r=p _
IlZ 214y v

2.2.1 Bound on the Solution
Theorem 3. The solution to system of equations (4)
is bounded.
Proof. Same proof in theorem 1.
2.2.2. Equilibrium and Stability

The model in system (4) has the following
equilibriums points:
e The trivial equilibrium point p_(0,0,0) always
exists.
 The equilibrium point P, (1,0,0) exists on the

boundary of the first octant.
» The nontrivial equilibrium point P_(x,.y,.z,),

where

Y b
Xo=1-ky, y,= 1 Zg
b, -y

2

vb

1

Exists under the conditions 1>k, y b, >y and

kox gy, >H(y):
Accordingly, the linear stability analysis about the
above equilibrium points gives the following:

. The eigenvalues of p are
3
" .
A =1,4,=-—"—— and 4,=-y<0 hence , is
(h-T)
saddle point.

o The eigenvalues of p,are a,=-1 A=k, >0 and
Ay=-7<0 hence P, is also a saddle point.

e Next, the characteristic equation near P, is
AP+AA2+BA+C, =0

Where
( h ’
A, =0-k,)x,+b, Zs —+ | | >0ifl>k,
(1+vy,) (h+y,-T )
r z ( h \z—l vb,z
B, = —x,lkx,—b—=——| | lrkgkoxgy o+ ——=
(L+y,) (h+ye-T )| (1+ys)
b z
(;5:—Y Vs 52 >0-
(1+vy5)

By Routh-Hurwitz criterion this point is stable is
AB,-C,>0

2.3. Piecewise Linear Threshold Policy Harvesting
In this section we take a piecewise linear threshold
policy harvesting

( 0 if y<T,
h(y -T
H(y)= hy -T)) if T,<y<T, ©)
| T,-T,
[ h if y>T,
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We shall study the effect of any small changes in the
qualitative definition of this function.
The model in this case becomes

}x =x (1-x)-k,xy

j yz h(y -T,) (6)
=k _xy —-b

‘y - ey T,-T,

\

|z :z(—7+b2 y )

l L 1+yJ

We do not consider the case when y <1 because we

study that in (2.1) .
2.3.1. Equilibrium and Stability whent <y <71,

Theorem 3.1.1 The solution of the system (6) is
bounded

Proof. Same proof in theorem 1.

The model system (6) has the following equilibrium
points:

e The trivial equilibrium point p_(0,0,0) always

exists.

[k XY —H (oy'lﬂe equilibrium point p_ - (1,0,0) exists on the

boundary of the first octant.
» The nontrivial equilibrium point p_(x,,y,.z,)

where
% b
Xa=lfk1ys’y8= 12y = Z[kzxsysfH(y)]
b27V Ybl
Exists under the conditions

1>k,y,. b,>yand k,x,y,>H (y) -

The linear stability analysis about the above
equilibrium points gives the following:
e The eigenvalues of p_are ; _; ; _ _ h__and
' ‘ T 2 7T1
i, = -y <0 ,therefore p_is saddle point.
. The eigenvalues of P, are
h -
4 —-1<0,4,-k,-—" .o and i =—y<o, hence
T2 _Tl
p, isstable point if , _ _h
Tz _Tl

e Next, for the positive equilibrium p , the
variational matrix is

[ 1
| |
i —X, kX, 0 I
Z, h b
Pazlkzya kzxsfb1 2 - ll
| (1+y5) T,-T, b, |
z
I 0 b, —— 0 I
L (1+Y,) ]
The  characteristic ~ equation at p, is
AP+ A2 +B,A+C, =0
Where
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z

A=(@L-k,)x, + +b £ A, >0if1>k
8 2/ %8 1 2 8 2
T,-T, (l+y3)

ZE }/bIZS
By = —xg(k,xg-b, 2 )+ kK Xy g+ 2
(l+ys) T27T1 (l+ys)
rb.x 2z
Ca:%>o
(1+y,)

By Routh-Hurwitz criterion this point is stable is

AB,-C, >0

2.3.2 Equilibrium and Stability when y >T,
When the prey size is greater than the threshold

value T, , this means that H (y)=nh where h is a

constant. In this case the model becomes

Xx"=x@L-x)-kxy

(
I
\
| yz (7
{y'=k,xy -b, -h
‘ 1+y
\
[z'=2(-y +bh, )
1+y

In the same way we can prove the solution of system
(7) is bounded and cannot have periodic orbit.
The model system (7) has the following equilibriums
points:
e The trivial equilibrium point p_(0,0,0) always
exists.
e The equilibrium point p (1,0,0) exist on the
boundary of the first octant.
» The nontrivial equilibrium point P (x .,y ,,.z,,) -
Where
Xy =1-Ky, .y, = L' I, = by [kzx11y117 h] '
b, -y vb
Exists under the conditions b, >

v »1>k,y, and
k 2X 11y 11 > h

The linear stability analysis about the above
equilibrium points gives the following:

e The eigenvalues of p, are ; -1-0,2,-0 and
4, =-y<0, hencep_ is an unstable manifold along
x -direction, while stable manifold along z -
direction, Therefore p is saddle point.

. The eigenvalues of Py are
A,=-1,4,=k, and 2, =-y hence p_ is also a
saddle point.

e Next, the characteristic equation at p,, is

3 2
AT+A A +B A+C =0

Where
le .
A,=0-k,)x,, +b, ~, A, >0if 1>k,
(1+yy)
(y +x,,)b.z )
B, = k1k2X11y11+ﬁ7k2X11
+yll
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C,, = RERINIVIN 0

(1+y 11)2
By Routh-Hurwitz criterion this point is stable is
A,B, -C . >0

4. Invariant Region
We have studied the existence of equilibriums and
determine the necessary and sufficient conditions for
them; we also prove the bounds on the solution and
show that these models cannot have any periodic
solution in the interior of the positive quadrant of the
xy -plane.
Next we would like to find the invariant region for
these models.
By comparing the equilibrium points and their
properties for both models in the cases where all
populations can survive, we show the size of prey
population is always is 1-k,y, also size of
intermediate predator population is alwaysy _ 7,
b, -y
and the corresponding z values satisfy

z,221,221,212,,
When
k2X5y5—H (y)Zkzxsya_H (Y)
However 1,22,22,>1,,
When

kzxsys_H (y)2 kzxsys_H (Y)

This difference depends on the distance between the
size of prey population and the threshold, and
whether the size of the top predator population
increasing or decreasing depends on the harvest of
prey. If we fixed all parameters, the size of
intermediate predator and prey and are fixed.
Therefore we can say the invariant region to these
models is the intersection of the four cones where
these cones are

i (X, Y,.2,)
ii. (xs,ys,zs)

i (X, Y4,24)
COINEIN

Hence the invariant region is (X ¥ 2y) -

iv .

5. Numerical Simulation

In this section, we try to explain some of the findings
of our study. After many numerical attempts and to
guarantee all populations survive, we fixed the
parameters as
b, =0.3391,b, =0.1941,k, = 0.3475,k, = 0.1031,y = 0.048 *

We found that the lowest value of the harvest is a
good way to maintain the coexistence of all
populations together and continued harvesting system
tends to stability.

We take parameter of harvesting is 0.000001, 0.0209
and 0.364 and show in first and second values of
harvesting all populations survive as in figures (1-2)
and
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in the third case we found that over-harvesting leads
to extinction of intermediate predator and thus the
extinction of top predator, as in figure (3).

And as a natural result the best policy for the harvest
is controlled the harvest to ensure the survival of all
populations and the sustainability of the harvest.

Also note that the harvest little means that the
interactions between populations less than in the case
of harvesting the biggest, and perhaps by the fact that

ISSN: 1813 — 1662 (Print)
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the little harvest means enough food to all predator
then no take long time to find the food, while when
we increase harvest that’s lead decreasing food then
the predator need long time to find the food. This
means the oscillations is small in first case figure (1)
and big oscillations in second case figure (2).

At increased harvest the system tends to destabilize
as in Figure (4), this proved to the role of harvesting
in stability of this system.
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Figure 1. Oscillation of prey, intermediate and top predator for harvesting =0.000001
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Figure 2. Oscillation of prey, intermediate and top predator for harvesting=0.0209
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Figure 3. Oscillation of prey, intermediate and top predator for harvesting=0.364
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Figure 4. The trajectories of system is stability for parameter of harvesting 0.000001, and 0.029.

6. Discussion
We have studied

two models with different

continuous threshold harvesting functions. In the first

100

model we consider a smooth harvesting behavior
started when the size of intermediate predator reached
the threshold, and in the second model we consider a
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piecewise linear harvesting behavior after the size of
intermediate predator reached the first threshold and
continuous after that.
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