Approximaitly Primary Submodules

Main Article Content

Ali Sh. Ajeel
Haibat K. Mohammadali

Abstract

The study deals with the notion of an approximaitly primary submodules of unitary left -module  over a commutative ring  with identity as a generalization of a primary submodules and approximaitly prime submodules, where a proper submodule  of an -module  is called an approximaitly primary submodule of , if whenever , for , , implies that either  or  for some positive integer  of . Several characterizations, basic properties of this concept are given. On the other hand the relationships of this concept with some classes of modules are studied. Furthermore, the behavior of approximaitly primary submodule under -homomorphism are discussed.

Article Details

How to Cite
Ali Sh. Ajeel, & Haibat K. Mohammadali. (2019). Approximaitly Primary Submodules. Tikrit Journal of Pure Science, 24(5), 105–110. https://doi.org/10.25130/tjps.v24i5.425
Section
Articles

References

[1] Dauns, J. (1978). “Prime Modules”. Journal reine Angew, Math. 2: 156-181.

[2] Lu, C. P. (1989). M-radical of Submodules in Modules. Math. Japan, 34: 211-219.

[3] Atani, S. E. and Farzallpour, F. (2006). “On Weakly Primary Ideals”. Georgion Math. Journal, 12 (3): 247-252.

[4] Atani, S. E. and Darani, A. Y. (2006). “On Quasi-primary Submodules”. Chiang Mai. Journal Sci. 33 (3): 249-254.

[5] Mohammed, B. H. (2016). “Nearly Semiprime Submodules”. M.Sc. Thesis University of Baghdad 71pp.

[6] Al-Mothafar, N. S. and Abdul-Allkalik, A. J. (2017). “Ψ–primary Submodules”. International Journal of Sci. Research, 6 (4): 1115-1120.

[7] Dubey, M. and Aggarwal, P. (2015). “On 2-Absorbing Primary Submodules of Modules over Commutative Rings”. Asian-European Journal of Math. 8 (4): 243-251.

[8] Haibat K. M. and Omer A. A. (2019). “Pseudo Primary-2-Absorbing Submodules”. Ibn AL-Haitham Journal for Pure and Applied Sci. To Appear in 32 (2): That will come out in June.

[9] Haibat K. M. and Ali Sh. A. (2019). “Approximaitly Prime submodules and Some Related concepts”. Ibn AL-Haitham Journal for Pure and

Applied Sci. To Appear in 32 (2): That will come out in June.

[10] Haibat K. M. and Ali Sh. A. (2019). “Approximaitly Quasi-prime submodules and Some Related concepts”. Journal of Al-Qadisiyah for Computer Science and Mathematics. in 11 (2): 54-62.

[11] Gooderal, K. R. (1976). “Ring Theory, Nonsingular Ring and Modules”. Marcel. Dekker, New York and Basel: 206pp.

[12] Deasle, G. and nicholson, W. K. (1981). “Endoprimitive Rings”. Journal of Algebra, Vol. 70 (2): 548-560.

[13] McCasland, R. L. and Moore, M. E. (1992). “Prime Submodules”. Comm. In Algebra, 20: 1802-1817.

[14] El-Bast, Z. A. and Smith, P. F. (1988). “Multiplication Modules”. Comm. In Algebra, 16 (4): 755-779.

[15] Smith, P.F. (1988). “Some Remarks On Multiplication Module”. Arch. Math. 50: 223-225.